Detection of broken rotor bar fault in induction motor at various load conditions using wavelet transforms

S. Sridhar, K. Rao, S. Jade
{"title":"Detection of broken rotor bar fault in induction motor at various load conditions using wavelet transforms","authors":"S. Sridhar, K. Rao, S. Jade","doi":"10.1109/RDCAPE.2015.7281373","DOIUrl":null,"url":null,"abstract":"Early detection of incipient rotor bar faults are important for efficient operation of large induction motors. This paper presents a methodology to detect rotor bar faults under no-load and loaded conditions, using wavelet transforms. In wavelet analysis, the wavelet coefficients are dependent on the basis function chosen. If these coefficients are used to capture the signature of a fault, then it is desirable to select a wavelet that produces the best results for the signal being analyzed. This paper presents the results obtained from a comparative study done using different discrete wavelet transforms for detection of broken rotor bar fault. Results indicate that the energy content of the wavelet coefficients are sufficient to distinguish between a healthy and faulty machine. The simulation of the proposed methodology is carried out using MATLAB /SIMULINK.","PeriodicalId":403256,"journal":{"name":"2015 International Conference on Recent Developments in Control, Automation and Power Engineering (RDCAPE)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Recent Developments in Control, Automation and Power Engineering (RDCAPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RDCAPE.2015.7281373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Early detection of incipient rotor bar faults are important for efficient operation of large induction motors. This paper presents a methodology to detect rotor bar faults under no-load and loaded conditions, using wavelet transforms. In wavelet analysis, the wavelet coefficients are dependent on the basis function chosen. If these coefficients are used to capture the signature of a fault, then it is desirable to select a wavelet that produces the best results for the signal being analyzed. This paper presents the results obtained from a comparative study done using different discrete wavelet transforms for detection of broken rotor bar fault. Results indicate that the energy content of the wavelet coefficients are sufficient to distinguish between a healthy and faulty machine. The simulation of the proposed methodology is carried out using MATLAB /SIMULINK.
基于小波变换的感应电动机转子断条故障检测
早期发现转子棒的早期故障对于大型异步电动机的高效运行具有重要意义。提出了一种基于小波变换的空载和有载转子棒故障检测方法。在小波分析中,小波系数取决于所选择的基函数。如果使用这些系数来捕获故障的特征,那么选择一个对被分析的信号产生最佳结果的小波是可取的。本文介绍了用不同离散小波变换检测转子断条故障的比较研究结果。结果表明,小波系数的能量含量足以区分正常和故障的机器。利用MATLAB /SIMULINK对所提出的方法进行了仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信