Multi-machine power system control based on dual heuristic dynamic programming

Zhen Ni, Yufei Tang, Haibo He, J. Wen
{"title":"Multi-machine power system control based on dual heuristic dynamic programming","authors":"Zhen Ni, Yufei Tang, Haibo He, J. Wen","doi":"10.1109/CIASG.2014.7011566","DOIUrl":null,"url":null,"abstract":"In this paper, we integrate a goal network into the existing dual heuristic dynamic programming (DHP) architecture, and study its damping performance on the multi-machine power system. There are four types of neural network in our proposed design: a goal network, a critic network, an action network and a model network. The motivation of this design is to build a general mapping between the system variables and the partial derivatives of the utility function, so that these required derivatives can be directly obtained and adaptively tuned over time. However, the existing DHP design can only obtain a predefined (fixed) external utility function (or its derivatives). We apply both the proposed approach and the existing DHP approach on the multi-machine power system, and compare the damping performance on a four-machine two-area power system. The simulation results demonstrate the improved control performance with the proposed design.","PeriodicalId":166543,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence Applications in Smart Grid (CIASG)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence Applications in Smart Grid (CIASG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIASG.2014.7011566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

In this paper, we integrate a goal network into the existing dual heuristic dynamic programming (DHP) architecture, and study its damping performance on the multi-machine power system. There are four types of neural network in our proposed design: a goal network, a critic network, an action network and a model network. The motivation of this design is to build a general mapping between the system variables and the partial derivatives of the utility function, so that these required derivatives can be directly obtained and adaptively tuned over time. However, the existing DHP design can only obtain a predefined (fixed) external utility function (or its derivatives). We apply both the proposed approach and the existing DHP approach on the multi-machine power system, and compare the damping performance on a four-machine two-area power system. The simulation results demonstrate the improved control performance with the proposed design.
基于对偶启发式动态规划的多机电力系统控制
本文将目标网络集成到现有的双启发式动态规划(DHP)体系中,研究其在多机电力系统中的阻尼性能。在我们提出的设计中有四种类型的神经网络:目标网络、批评网络、行动网络和模型网络。本设计的动机是建立系统变量与效用函数偏导数之间的一般映射,以便可以直接获得这些所需的导数并随时间自适应调整。然而,现有的DHP设计只能获得一个预定义的(固定的)外部效用函数(或其衍生物)。我们将所提出的方法与现有的DHP方法应用于多机电力系统,并比较了四机两区电力系统的阻尼性能。仿真结果表明,该设计改善了系统的控制性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信