Accelerating colonic polyp detection using commodity graphics hardware

David Williams, V. Codreanu, J. Roerdink, Po-Kai Yang, Baoquan Liu, Feng Dong, A. Chiarini
{"title":"Accelerating colonic polyp detection using commodity graphics hardware","authors":"David Williams, V. Codreanu, J. Roerdink, Po-Kai Yang, Baoquan Liu, Feng Dong, A. Chiarini","doi":"10.1109/ICCMA.2013.6506147","DOIUrl":null,"url":null,"abstract":"We present a parallel implementation of an algorithm for the detection of colonic polyps from CT data sets. This implementation is designed specifically to take advantage of the computational power available on modern Graphics Processing Units (GPUs), which significantly reduces the execution time to streamline the workflow of clinicians examining the data. We provide details about the changes which were made to the existing algorithm to suit the new target hardware, and perform tests which demonstrate that the results are a very close match to the reference implementation while being computed in a fraction of the time.","PeriodicalId":187834,"journal":{"name":"2013 International Conference on Computer Medical Applications (ICCMA)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Computer Medical Applications (ICCMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCMA.2013.6506147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We present a parallel implementation of an algorithm for the detection of colonic polyps from CT data sets. This implementation is designed specifically to take advantage of the computational power available on modern Graphics Processing Units (GPUs), which significantly reduces the execution time to streamline the workflow of clinicians examining the data. We provide details about the changes which were made to the existing algorithm to suit the new target hardware, and perform tests which demonstrate that the results are a very close match to the reference implementation while being computed in a fraction of the time.
加速结肠息肉检测使用商品图形硬件
我们提出了一种从CT数据集检测结肠息肉的并行实现算法。这种实现是专门为利用现代图形处理单元(gpu)的计算能力而设计的,这大大减少了执行时间,简化了临床医生检查数据的工作流程。我们提供了对现有算法所做的更改的详细信息,以适应新的目标硬件,并执行测试,证明结果与参考实现非常接近,同时在一小部分时间内进行计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信