Biosequence Classification using Sequential Pattern Mining and Optimization

D. Fotiadis, T. Exarchos, M. Tsipouras, C. Papaloukas
{"title":"Biosequence Classification using Sequential Pattern Mining and Optimization","authors":"D. Fotiadis, T. Exarchos, M. Tsipouras, C. Papaloukas","doi":"10.1109/ITAB.2007.4407423","DOIUrl":null,"url":null,"abstract":"In this paper we present a methodology for biosequence classification, which employs sequential pattern mining and optimization algorithms. In the first stage, a sequential pattern mining algorithm is applied to a set of biological sequences and the sequential patterns are extracted. Then, the score of each pattern with respect to each sequence is calculated using a scoring function and the score of each class under consideration is estimated. The scores of the patterns and classes are updated, multiplied by a weight. In the second stage an optimization technique is employed to calculate the weight values to achieve the optimal classification accuracy. The methodology is applied in the protein class and fold prediction problem. Extensive evaluation is carried out, using a dataset obtained from the Protein Data Bank.","PeriodicalId":129874,"journal":{"name":"2007 6th International Special Topic Conference on Information Technology Applications in Biomedicine","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 6th International Special Topic Conference on Information Technology Applications in Biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITAB.2007.4407423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper we present a methodology for biosequence classification, which employs sequential pattern mining and optimization algorithms. In the first stage, a sequential pattern mining algorithm is applied to a set of biological sequences and the sequential patterns are extracted. Then, the score of each pattern with respect to each sequence is calculated using a scoring function and the score of each class under consideration is estimated. The scores of the patterns and classes are updated, multiplied by a weight. In the second stage an optimization technique is employed to calculate the weight values to achieve the optimal classification accuracy. The methodology is applied in the protein class and fold prediction problem. Extensive evaluation is carried out, using a dataset obtained from the Protein Data Bank.
基于序列模式挖掘和优化的生物序列分类
本文提出了一种基于序列模式挖掘和优化算法的生物序列分类方法。首先,对一组生物序列应用序列模式挖掘算法,提取序列模式;然后,使用评分函数计算每个模式相对于每个序列的得分,并估计所考虑的每个类别的得分。模式和类的分数被更新,乘以一个权重。第二阶段采用优化技术计算权重值以达到最优的分类精度。将该方法应用于蛋白质类和折叠预测问题。使用从蛋白质数据库获得的数据集进行了广泛的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信