Electromechanical Modeling and Simulation of MEMS-Based Piezoelectric Vibration Energy Harvesting Device Using PZT-5H Material

Tuan Ngoc Dao, Phuoc Thanh Quang Le, Tho Quang Than, Son Thanh Nguyen, Tung Thanh Huynh, Phuoc-Anh Le, Than Hong Phuc, Cong-Kha Pham
{"title":"Electromechanical Modeling and Simulation of MEMS-Based Piezoelectric Vibration Energy Harvesting Device Using PZT-5H Material","authors":"Tuan Ngoc Dao, Phuoc Thanh Quang Le, Tho Quang Than, Son Thanh Nguyen, Tung Thanh Huynh, Phuoc-Anh Le, Than Hong Phuc, Cong-Kha Pham","doi":"10.31130/ud-jst.2023.340ict","DOIUrl":null,"url":null,"abstract":"In this study, we describe the operation of piezoelectric energy converters and electromechanical modeling of piezoelectric energy harvesting (PEH) devices based on microelectromechanical systems (MEMS) for low-power sensors. Consideration is given to a piezoelectric energy harvester based on standard MEMS. The parameters are determined and optimized using a simple MEMS cantilever model. On top of a Brass substrate, the model uses a single layer of piezoelectric material. We  utilized the finite element method (FEM) models created with software tools NanoHUB and COMSOL to  analyze the electromechanical behavior of MEMS-based piezoelectric energy harvesting (PEH) devices. The electromechanical modeling was applied to predict the modal and harmonic response of the PEH devices. By using a modal analysis, the resonant frequencies are 182 Hz for the FEM models of the PZT-5H PEH device through NanoHUB and COMSOL. The simulated MEMS can provide a voltage between 1.7 and 1.9 mV, 0.074 µW of output power. The produced voltage and output power may be increased by connecting the piezoelectric layers in parallel and series. And the Internet of Things (IoT) sensors might be driven by this array of devices.","PeriodicalId":262140,"journal":{"name":"Journal of Science and Technology Issue on Information and Communications Technology","volume":"08 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science and Technology Issue on Information and Communications Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31130/ud-jst.2023.340ict","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we describe the operation of piezoelectric energy converters and electromechanical modeling of piezoelectric energy harvesting (PEH) devices based on microelectromechanical systems (MEMS) for low-power sensors. Consideration is given to a piezoelectric energy harvester based on standard MEMS. The parameters are determined and optimized using a simple MEMS cantilever model. On top of a Brass substrate, the model uses a single layer of piezoelectric material. We  utilized the finite element method (FEM) models created with software tools NanoHUB and COMSOL to  analyze the electromechanical behavior of MEMS-based piezoelectric energy harvesting (PEH) devices. The electromechanical modeling was applied to predict the modal and harmonic response of the PEH devices. By using a modal analysis, the resonant frequencies are 182 Hz for the FEM models of the PZT-5H PEH device through NanoHUB and COMSOL. The simulated MEMS can provide a voltage between 1.7 and 1.9 mV, 0.074 µW of output power. The produced voltage and output power may be increased by connecting the piezoelectric layers in parallel and series. And the Internet of Things (IoT) sensors might be driven by this array of devices.
基于PZT-5H材料的mems压电振动能量收集装置的机电建模与仿真
在本研究中,我们描述了压电能量转换器的工作原理和基于微机电系统(MEMS)的压电能量收集(PEH)器件的机电建模。研究了一种基于标准MEMS的压电能量采集器。使用简单的MEMS悬臂模型确定和优化参数。在黄铜衬底上,该模型使用了一层压电材料。利用软件工具NanoHUB和COMSOL建立有限元模型,分析了基于mems的压电能量收集(PEH)器件的机电行为。利用机电建模方法预测了PEH器件的模态响应和谐波响应。通过NanoHUB和COMSOL软件对PZT-5H PEH器件的有限元模型进行模态分析,得到谐振频率为182 Hz。仿真的MEMS可以提供1.7 ~ 1.9 mV的电压,0.074µW的输出功率。压电层并联或串联可以提高产生的电压和输出功率。物联网(IoT)传感器可能由这一系列设备驱动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信