Data Dependent Energy Modeling for Worst Case Energy Consumption Analysis

James Pallister, Steve Kerrison, J. Morse, K. Eder
{"title":"Data Dependent Energy Modeling for Worst Case Energy Consumption Analysis","authors":"James Pallister, Steve Kerrison, J. Morse, K. Eder","doi":"10.1145/3078659.3078666","DOIUrl":null,"url":null,"abstract":"Safely meeting Worst Case Energy Consumption (WCEC) criteria requires accurate energy modeling of software. We investigate the impact of instruction operand values upon energy consumption in cacheless embedded processors. Existing instruction-level energy models typically use measurements from random input data, providing estimates unsuitable for safe WCEC analysis. We examine probabilistic energy distributions of instructions and propose a model for composing instruction sequences using distributions, enabling WCEC analysis on program basic blocks. The worst case is predicted with statistical analysis. Further, we verify that the energy of embedded benchmarks can be characterised as a distribution, and compare our proposed technique with other methods of estimating energy consumption.","PeriodicalId":240210,"journal":{"name":"Proceedings of the 20th International Workshop on Software and Compilers for Embedded Systems","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th International Workshop on Software and Compilers for Embedded Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3078659.3078666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Safely meeting Worst Case Energy Consumption (WCEC) criteria requires accurate energy modeling of software. We investigate the impact of instruction operand values upon energy consumption in cacheless embedded processors. Existing instruction-level energy models typically use measurements from random input data, providing estimates unsuitable for safe WCEC analysis. We examine probabilistic energy distributions of instructions and propose a model for composing instruction sequences using distributions, enabling WCEC analysis on program basic blocks. The worst case is predicted with statistical analysis. Further, we verify that the energy of embedded benchmarks can be characterised as a distribution, and compare our proposed technique with other methods of estimating energy consumption.
基于数据的最坏情况能耗分析模型
安全满足最坏情况下的能源消耗(WCEC)标准需要准确的能源建模软件。我们研究了无缓存嵌入式处理器中指令操作数值对能耗的影响。现有的指令级能量模型通常使用随机输入数据的测量,提供的估计不适合安全的WCEC分析。我们研究了指令的概率能量分布,并提出了一个使用分布组合指令序列的模型,从而实现了对程序基本块的WCEC分析。通过统计分析预测了最坏的情况。此外,我们验证了嵌入式基准的能量可以表征为一个分布,并将我们提出的技术与其他估计能量消耗的方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信