On the Impact of the Gate Metal Work-Function on the Charge Trapping Component of BTI

J. Franco, Z. Wu, G. Rzepa, L. Ragnarsson, H. Dekkers, A. Vandooren, G. Groeseneken, N. Horiguchi, N. Collaert, D. Linten, T. Grasser, B. Kaczer
{"title":"On the Impact of the Gate Metal Work-Function on the Charge Trapping Component of BTI","authors":"J. Franco, Z. Wu, G. Rzepa, L. Ragnarsson, H. Dekkers, A. Vandooren, G. Groeseneken, N. Horiguchi, N. Collaert, D. Linten, T. Grasser, B. Kaczer","doi":"10.1109/IIRW.2018.8727089","DOIUrl":null,"url":null,"abstract":"We investigate BTI charge trapping trends in high-k metal gate (HKMG) stacks with a variety of work function metals. Most BTI models suggest charge trapping in oxide defects is modulated by the applied oxide electric field, which controls the energy barrier for the capture process, irrespective of the metal work function. However, experimental data show enhanced or reduced charge trapping at constant oxide electric field for different work function metal stacks. We ascribe this to a different chemical interaction of the metal stack with the dielectric, yielding different defect profiles depending on the process thermal budget. Furthermore, by employing the imec/T.U. Wien physics-based BTI simulation framework “Comphy”, we also show that different metal work functions within a typical range of relevance (4.35-4.75eV) can yield a different charge state of the deep high-k defects, and can therefore have an impact on charge trapping kinetics during BTI stress, particularly in nMOSFETs.","PeriodicalId":365267,"journal":{"name":"2018 International Integrated Reliability Workshop (IIRW)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Integrated Reliability Workshop (IIRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIRW.2018.8727089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate BTI charge trapping trends in high-k metal gate (HKMG) stacks with a variety of work function metals. Most BTI models suggest charge trapping in oxide defects is modulated by the applied oxide electric field, which controls the energy barrier for the capture process, irrespective of the metal work function. However, experimental data show enhanced or reduced charge trapping at constant oxide electric field for different work function metal stacks. We ascribe this to a different chemical interaction of the metal stack with the dielectric, yielding different defect profiles depending on the process thermal budget. Furthermore, by employing the imec/T.U. Wien physics-based BTI simulation framework “Comphy”, we also show that different metal work functions within a typical range of relevance (4.35-4.75eV) can yield a different charge state of the deep high-k defects, and can therefore have an impact on charge trapping kinetics during BTI stress, particularly in nMOSFETs.
栅极金属工作功能对BTI电荷俘获元件的影响
我们研究了不同功功能金属在高钾金属栅(HKMG)电堆中的BTI电荷捕获趋势。大多数BTI模型表明,氧化缺陷中的电荷捕获是由施加的氧化电场调制的,氧化电场控制捕获过程的能量势垒,而不考虑金属功函数。然而,实验数据表明,在恒定的氧化电场下,不同功函数金属堆的电荷俘获增强或减弱。我们将此归因于金属堆与电介质的不同化学相互作用,根据工艺热收支产生不同的缺陷轮廓。此外,通过采用imec/T.U.在基于物理的BTI模拟框架“Comphy”中,我们还表明,在典型的相关范围(4.35-4.75eV)内,不同的金属功函数可以产生深度高k缺陷的不同电荷状态,因此可以影响BTI应力期间的电荷捕获动力学,特别是在nmosfet中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信