{"title":"Analysis of PCB Discontinuities Using FD-TD and Wavelets","authors":"R. Araneo, S. Celozzi, S. Barmada, Marco Raugi","doi":"10.1109/SPI.2002.258301","DOIUrl":null,"url":null,"abstract":"A wavelet-based technique is proposed for the extraction of a two-port equivalent circuit of typical printed circuit board (PCB) discontinuities from full-wave FD-TD results. An equivalent representation in the wavelet domain of the discontinuity is obtained by expanding the computed time domain quantities. Hence the wavelet transformed scattering parameters can be included in a wavelet equivalent of TEM wave propagation paths along the PCB in order to obtain an overall equivalent of the entire structure. The wavelet representation drastically minimizes the CPU time and computer storage requirements while maintaining excellent accuracy, so that it proves to be a very useful modeling tool especially in the design stage.","PeriodicalId":290013,"journal":{"name":"Proceedings: 6th IEEE Workshop on Signal Propagation on Interconnects","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings: 6th IEEE Workshop on Signal Propagation on Interconnects","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPI.2002.258301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A wavelet-based technique is proposed for the extraction of a two-port equivalent circuit of typical printed circuit board (PCB) discontinuities from full-wave FD-TD results. An equivalent representation in the wavelet domain of the discontinuity is obtained by expanding the computed time domain quantities. Hence the wavelet transformed scattering parameters can be included in a wavelet equivalent of TEM wave propagation paths along the PCB in order to obtain an overall equivalent of the entire structure. The wavelet representation drastically minimizes the CPU time and computer storage requirements while maintaining excellent accuracy, so that it proves to be a very useful modeling tool especially in the design stage.