Extraction of Pospieszalski's noise model parameters of microwave FETs based on ANNs

V. Dordevic, Z. Marinković, V. Markovic, O. Pronić-Rančić
{"title":"Extraction of Pospieszalski's noise model parameters of microwave FETs based on ANNs","authors":"V. Dordevic, Z. Marinković, V. Markovic, O. Pronić-Rančić","doi":"10.1109/NEUREL.2014.7011457","DOIUrl":null,"url":null,"abstract":"A new neural approach for extraction of the Pospieszalski's noise model parameters of microwave FETs is presented in this paper. This approach is based on the use of two artificial neural networks. The first network is aimed at calculating the intrinsic noise parameters from the given equivalent circuit parameters, transistor total noise parameters, frequency and ambient temperature. Since the gate noise temperature in the Pospieszalski's noise model is approximately equal to the ambient temperature, only the value of drain noise temperature is to be determined. Therefore, the second network is trained to determine drain noise temperature from the given extracted intrinsic noise parameters, equivalent intrinsic circuit parameters, frequency and ambient temperature. The proposed extracting approach enables avoiding time-consuming optimization procedures in microwave simulators, which are conventionally used for the determination of the noise model parameters. A detailed validation of the proposed approach was done by comparison of the measured transistor noise parameters with those obtained by using the extracted drain noise temperature.","PeriodicalId":402208,"journal":{"name":"12th Symposium on Neural Network Applications in Electrical Engineering (NEUREL)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th Symposium on Neural Network Applications in Electrical Engineering (NEUREL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2014.7011457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A new neural approach for extraction of the Pospieszalski's noise model parameters of microwave FETs is presented in this paper. This approach is based on the use of two artificial neural networks. The first network is aimed at calculating the intrinsic noise parameters from the given equivalent circuit parameters, transistor total noise parameters, frequency and ambient temperature. Since the gate noise temperature in the Pospieszalski's noise model is approximately equal to the ambient temperature, only the value of drain noise temperature is to be determined. Therefore, the second network is trained to determine drain noise temperature from the given extracted intrinsic noise parameters, equivalent intrinsic circuit parameters, frequency and ambient temperature. The proposed extracting approach enables avoiding time-consuming optimization procedures in microwave simulators, which are conventionally used for the determination of the noise model parameters. A detailed validation of the proposed approach was done by comparison of the measured transistor noise parameters with those obtained by using the extracted drain noise temperature.
基于人工神经网络的微波场效应管Pospieszalski噪声模型参数提取
提出了一种提取微波场效应管波斯特萨尔斯基噪声模型参数的神经网络方法。这种方法是基于使用两个人工神经网络。第一个网络旨在根据给定的等效电路参数、晶体管总噪声参数、频率和环境温度计算固有噪声参数。由于Pospieszalski噪声模型中的栅极噪声温度近似等于环境温度,因此只需确定漏极噪声温度的值。因此,对第二个网络进行训练,从给定提取的本征噪声参数、等效本征电路参数、频率和环境温度中确定漏极噪声温度。所提出的提取方法可以避免在微波模拟器中耗时的优化过程,这通常用于确定噪声模型参数。通过将测量的晶体管噪声参数与利用提取的漏极噪声温度得到的晶体管噪声参数进行比较,对所提出的方法进行了详细的验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信