Obstacle and singularity avoidance for kinematically redundant manipulators based on neurodynamic optimization

Panpan Zhang, Zheng Yan, Jun Wang
{"title":"Obstacle and singularity avoidance for kinematically redundant manipulators based on neurodynamic optimization","authors":"Panpan Zhang, Zheng Yan, Jun Wang","doi":"10.1109/ICICIP.2014.7010299","DOIUrl":null,"url":null,"abstract":"With wide applications of kinematically redundant manipulators in robotics, obstacle and singularity avoidance emerge as critical issues to be addressed. Correspondingly, three problems have to be considered, including the determination of critical points on a given manipulator, the computation of joint velocities using inverse kinematics, and the analysis of singularity caused by configurations of manipulators. In this paper, these tasks are formulated as a convex quadratic programming (QP) subject to equality and inequality constraints with time-varying parameters where physical constraints such as joint physical limits are also incorporated directly into the formulation. To solve the QP problem in real time, a recurrent neural network called the improved dual neural network is applied, which has lower structural complexity compared with existing neural networks for solving this particular problem. The effectiveness of the proposed approaches is demonstrated by simulation results based on the Mitsubishi PA10-7C manipulator.","PeriodicalId":408041,"journal":{"name":"Fifth International Conference on Intelligent Control and Information Processing","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth International Conference on Intelligent Control and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2014.7010299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

With wide applications of kinematically redundant manipulators in robotics, obstacle and singularity avoidance emerge as critical issues to be addressed. Correspondingly, three problems have to be considered, including the determination of critical points on a given manipulator, the computation of joint velocities using inverse kinematics, and the analysis of singularity caused by configurations of manipulators. In this paper, these tasks are formulated as a convex quadratic programming (QP) subject to equality and inequality constraints with time-varying parameters where physical constraints such as joint physical limits are also incorporated directly into the formulation. To solve the QP problem in real time, a recurrent neural network called the improved dual neural network is applied, which has lower structural complexity compared with existing neural networks for solving this particular problem. The effectiveness of the proposed approaches is demonstrated by simulation results based on the Mitsubishi PA10-7C manipulator.
基于神经动力学优化的运动冗余机械臂避障与避奇
随着运动学冗余度机械手在机器人领域的广泛应用,障碍物和奇点回避成为机器人研究的关键问题。相应的,需要考虑三个问题,包括给定机械臂上临界点的确定,用运动学逆计算关节速度,以及由机械臂构型引起的奇点分析。在本文中,这些任务被表述为一个受时变参数的等式和不等式约束的凸二次规划(QP),其中物理约束如关节物理极限也被直接纳入到公式中。为了实时解决QP问题,采用了一种称为改进对偶神经网络的递归神经网络,与现有的神经网络相比,它具有较低的结构复杂度。基于三菱PA10-7C机械手的仿真结果验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信