L. Schiano, M. Momenzadeh, F. Zhang, Y.J. Lee, Y. Kim, F. Lombardi, F. Meyer, T. Kane, S. Max, P. Perkins
{"title":"Frequency domain measurement of timing jitter in ATE","authors":"L. Schiano, M. Momenzadeh, F. Zhang, Y.J. Lee, Y. Kim, F. Lombardi, F. Meyer, T. Kane, S. Max, P. Perkins","doi":"10.1109/IMTC.2004.1351515","DOIUrl":null,"url":null,"abstract":"The objective of this paper is to provide a framework by which jitter phenomena, which are encountered at the output signals of a head board in an automatic test equipment (ATE), can be studied. In this paper, the jitter refers to the one caused by radiated electromagnetic interference (EMI) noise, which is present in the head of all ATE due to DC-DC converter activity. An initial analysis of the areas of the head board most sensitive to EMI noise has been made. It identifies a sensitive part in the loop filler of a phase locked loop which is used to obtain a high frequency clock for the timing generator. Different H-fields are then applied externally at the loop filter to verify the behavior of the output signal of the head board in terms of RMS jitter. As for RMS jitter measurements, a frequency domain methodology has been employed. A trend for RMS jitter variation with respect to radiated EMI magnitude as well as frequency has been obtained. Also the orientation of the external H-field source with respect to the target board and its effects on the measured RMS jitter has been investigated. For measuring the RMS value, a proper circuitry has been designed on a daughter board to circumvent ground noise and connectivity problems arising from the head environment.","PeriodicalId":386903,"journal":{"name":"Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference (IEEE Cat. No.04CH37510)","volume":"28 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference (IEEE Cat. No.04CH37510)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMTC.2004.1351515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The objective of this paper is to provide a framework by which jitter phenomena, which are encountered at the output signals of a head board in an automatic test equipment (ATE), can be studied. In this paper, the jitter refers to the one caused by radiated electromagnetic interference (EMI) noise, which is present in the head of all ATE due to DC-DC converter activity. An initial analysis of the areas of the head board most sensitive to EMI noise has been made. It identifies a sensitive part in the loop filler of a phase locked loop which is used to obtain a high frequency clock for the timing generator. Different H-fields are then applied externally at the loop filter to verify the behavior of the output signal of the head board in terms of RMS jitter. As for RMS jitter measurements, a frequency domain methodology has been employed. A trend for RMS jitter variation with respect to radiated EMI magnitude as well as frequency has been obtained. Also the orientation of the external H-field source with respect to the target board and its effects on the measured RMS jitter has been investigated. For measuring the RMS value, a proper circuitry has been designed on a daughter board to circumvent ground noise and connectivity problems arising from the head environment.