Lab-Scale Anodization of Prototype Brake Calipers

Federico Bertasi, Marco Bandiera, A. Mancini, Ariana Pavesi, A. Bonfanti, M. Bestetti
{"title":"Lab-Scale Anodization of Prototype Brake Calipers","authors":"Federico Bertasi, Marco Bandiera, A. Mancini, Ariana Pavesi, A. Bonfanti, M. Bestetti","doi":"10.46720/3846714eb2021-stp-012","DOIUrl":null,"url":null,"abstract":"Anodization plays a pivotal role in improving the corrosion resistance of Aluminum-Silicon alloys (AlSix) used in the production of brake calipers.[1] However, the presence of eutectic Silicon particles within the Al matrix can reduce the oxide layer growing rate, leading to inhomogeneous and porous coatings. Following this, tailored current/potential anodization waveforms have been developed, in order to overcome the presence of Silicon, thus obtaining anodic layers with enhanced morphological and corrosion-resistance features.[2][3] In this scenario, a fervent lab-scale R&D activity has been carried out regarding the optimization of pulsed anodization in terms of current density and frequency of the used square wave, obtaining: 1) coated AlSix specimens (30cm2) showing a superior corrosion resistance; and 2) a set of refined anodization parameters to be used to treat AlSix –based materials.[4] Unfortunately, anodization of a prototype caliper, using the obtained optimized waveforms, is not straightforward and appears particularly more challenging with respect to the lab-scale treatment of small specimens. Indeed, the presence of: a) non-uniform Silicon distribution (machined vs. non-machined regions); and b) shielded areas and/or sharp edges; can strongly influence the oxide growth, leading to inhomogeneous coatings and a morphology-dependent corrosion resistance. As a further step toward the implementation of the optimized parameters in an anodization pilot plant, an electrochemical bath is designed, aiming at: 1) anodize a single brake caliper; and 2) scale up the anodization parameters from specimens to caliper treatment. The manuscript will discuss the so-obtained anodized caliper in terms of oxide layer: a) morphology; b) wettability; and c) corrosion resistance. The effect of optimized vs. non-optimized parameters will be discussed as well. Results allow to outline the path for an advanced anodization process, that will briefly lead to obtain AlSix brake calipers with an extended corrosion resistance. References: [1] Bandiera, M., Bonfanti, A., Mauri, A., Mancini, A., Bestetti, M., Bertasi, F., “Corrosion Phenomena in Braking Systems”, CORROSION/20, Manuscript no. C2020-14550, 2020. [2] Bandiera, M., Bonfanti, A., Bestetti, M., Bertasi, F., “Anodization: Recent Advancements on Corrosion Protection of Brake Calipers”, SAE Technical Paper, Manuscript no. 2020-01-1626, 2020. [3] Fratila-Apachitei, L. E., J. Duszczyk, and L. Katgerman. \"AlSi (Cu) anodic oxide layers formed in H2SO4 at low temperature using different current waveforms\", Surface and Coatings Technology, 165.3, pp. 232-240, 2003. [4] Bandiera, M., Mancini, A., Pavesi, A., Bonfanti, A., Bestetti, M., Bertasi, F., “Optimized Pulsed Anodization for Corrosion Protection of Aluminum Silicon Alloys”, CORROSION/21, Manuscript no. C2021-16431, 2021. (under review).","PeriodicalId":315146,"journal":{"name":"EuroBrake 2021 Technical Programme","volume":"255 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EuroBrake 2021 Technical Programme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46720/3846714eb2021-stp-012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Anodization plays a pivotal role in improving the corrosion resistance of Aluminum-Silicon alloys (AlSix) used in the production of brake calipers.[1] However, the presence of eutectic Silicon particles within the Al matrix can reduce the oxide layer growing rate, leading to inhomogeneous and porous coatings. Following this, tailored current/potential anodization waveforms have been developed, in order to overcome the presence of Silicon, thus obtaining anodic layers with enhanced morphological and corrosion-resistance features.[2][3] In this scenario, a fervent lab-scale R&D activity has been carried out regarding the optimization of pulsed anodization in terms of current density and frequency of the used square wave, obtaining: 1) coated AlSix specimens (30cm2) showing a superior corrosion resistance; and 2) a set of refined anodization parameters to be used to treat AlSix –based materials.[4] Unfortunately, anodization of a prototype caliper, using the obtained optimized waveforms, is not straightforward and appears particularly more challenging with respect to the lab-scale treatment of small specimens. Indeed, the presence of: a) non-uniform Silicon distribution (machined vs. non-machined regions); and b) shielded areas and/or sharp edges; can strongly influence the oxide growth, leading to inhomogeneous coatings and a morphology-dependent corrosion resistance. As a further step toward the implementation of the optimized parameters in an anodization pilot plant, an electrochemical bath is designed, aiming at: 1) anodize a single brake caliper; and 2) scale up the anodization parameters from specimens to caliper treatment. The manuscript will discuss the so-obtained anodized caliper in terms of oxide layer: a) morphology; b) wettability; and c) corrosion resistance. The effect of optimized vs. non-optimized parameters will be discussed as well. Results allow to outline the path for an advanced anodization process, that will briefly lead to obtain AlSix brake calipers with an extended corrosion resistance. References: [1] Bandiera, M., Bonfanti, A., Mauri, A., Mancini, A., Bestetti, M., Bertasi, F., “Corrosion Phenomena in Braking Systems”, CORROSION/20, Manuscript no. C2020-14550, 2020. [2] Bandiera, M., Bonfanti, A., Bestetti, M., Bertasi, F., “Anodization: Recent Advancements on Corrosion Protection of Brake Calipers”, SAE Technical Paper, Manuscript no. 2020-01-1626, 2020. [3] Fratila-Apachitei, L. E., J. Duszczyk, and L. Katgerman. "AlSi (Cu) anodic oxide layers formed in H2SO4 at low temperature using different current waveforms", Surface and Coatings Technology, 165.3, pp. 232-240, 2003. [4] Bandiera, M., Mancini, A., Pavesi, A., Bonfanti, A., Bestetti, M., Bertasi, F., “Optimized Pulsed Anodization for Corrosion Protection of Aluminum Silicon Alloys”, CORROSION/21, Manuscript no. C2021-16431, 2021. (under review).
制动卡钳原型的实验室规模阳极氧化
阳极氧化在提高制动卡钳用铝硅合金(AlSix)的耐腐蚀性方面起着关键作用。[1]然而,Al基体中共晶硅颗粒的存在会降低氧化层的生长速度,导致涂层不均匀和多孔。在此之后,定制的电流/电位阳极化波形被开发出来,以克服硅的存在,从而获得具有增强形态和耐腐蚀性特征的阳极层。[2][3]在这种情况下,针对脉冲阳极氧化的电流密度和使用方波的频率进行了热烈的实验室规模的研发活动,获得了:1)涂层AlSix样品(30cm2)具有优异的耐腐蚀性;2)一套细化的阳极氧化参数,用于处理AlSix基材料。[4]不幸的是,使用获得的优化波形对原型卡尺进行阳极氧化并不简单,并且相对于小样本的实验室规模处理显得尤其具有挑战性。事实上,存在:a)不均匀的硅分布(加工与非加工区域);b)屏蔽区域和/或尖锐边缘;可以强烈地影响氧化物的生长,导致不均匀的涂层和形貌依赖的耐腐蚀性。为了进一步在阳极氧化中试装置中实现优化的参数,设计了一个电化学浴,旨在:1)对单个制动卡钳进行阳极氧化;2)将阳极氧化参数从试样放大到卡尺处理。本文将从氧化层的角度对所得到的阳极氧化卡尺进行讨论:a)形貌;b)润湿性;c)耐腐蚀。优化参数与非优化参数的影响也将被讨论。结果允许勾勒出先进阳极氧化工艺的路径,这将简要地导致获得具有扩展耐腐蚀性的AlSix制动卡钳。参考文献:[1]Bandiera, M., Bonfanti, A., Mauri, A., Mancini, A., Bestetti, M., Bertasi, F.,“制动系统中的腐蚀现象”,腐蚀/20,手稿号。c2020 - 14550, 2020。[2]张建军,张建军,张建军,“阳极氧化技术在汽车制动钳腐蚀防护中的应用”,汽车工程学报,第2期。2020-01-1626, 2020。[3]李建军,李建军,李建军,等。“低温下不同电流波形在H2SO4中形成的AlSi (Cu)阳极氧化层”,表面与涂层技术,165.3,pp. 232- 240,2003。[4]刘建军,刘建军,刘建军,刘建军,“脉冲阳极氧化对铝硅合金的腐蚀防护研究”,金属学报,第21卷第1期。c2021 - 16431, 2021。(审查)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信