Development of an optomechanical measurement system for dynamic stability analysis

S. Pasinetti, M. Lancini, V. Pasqui
{"title":"Development of an optomechanical measurement system for dynamic stability analysis","authors":"S. Pasinetti, M. Lancini, V. Pasqui","doi":"10.1109/IWASI.2015.7184951","DOIUrl":null,"url":null,"abstract":"The paper presents the development of a measurement system for dynamic stability analysis. The system is composed of an actuation device, that is a robotic platform with four degrees of freedom, and two measurement systems: a force platform, to measure the position of the centre of pressure (COP), and a vision system, to measure the position of the centre of mass (COM). The purpose of the system is to provide means to identify whether a subject behaves like an inverted pendulum (as the literature predicts for static posturography), when a dynamic perturbation is applied. This can be achieved by generating a movement of the robotic platform and, simultaneously, by measuring COP and COM trajectories and verify their coherence with the inverse pendulum model.","PeriodicalId":395550,"journal":{"name":"2015 6th International Workshop on Advances in Sensors and Interfaces (IWASI)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 6th International Workshop on Advances in Sensors and Interfaces (IWASI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWASI.2015.7184951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The paper presents the development of a measurement system for dynamic stability analysis. The system is composed of an actuation device, that is a robotic platform with four degrees of freedom, and two measurement systems: a force platform, to measure the position of the centre of pressure (COP), and a vision system, to measure the position of the centre of mass (COM). The purpose of the system is to provide means to identify whether a subject behaves like an inverted pendulum (as the literature predicts for static posturography), when a dynamic perturbation is applied. This can be achieved by generating a movement of the robotic platform and, simultaneously, by measuring COP and COM trajectories and verify their coherence with the inverse pendulum model.
动态稳定性光机械测量系统的研制
本文介绍了一种动态稳定性分析测量系统的研制。该系统由驱动装置(四自由度机器人平台)和两个测量系统组成:测量压力中心位置的力平台(COP)和测量质心位置的视觉系统(COM)。该系统的目的是提供一种方法来识别当施加动态扰动时,受试者的行为是否像倒立摆(正如静态姿势学的文献预测的那样)。这可以通过产生机器人平台的运动来实现,同时,通过测量COP和COM轨迹,并通过倒摆模型验证它们的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信