FORECASTING OF SMALL CARDAMOM PRICE USING SARIMA MODEL

Mareena Thomas, P. Menon
{"title":"FORECASTING OF SMALL CARDAMOM PRICE USING SARIMA MODEL","authors":"Mareena Thomas, P. Menon","doi":"10.58537/jorangrau.2022.50.4.12","DOIUrl":null,"url":null,"abstract":"The study was undertaken to identify a model for forecasting the price of small cardamom using the data consisting of prices from January 2001 to December 2021 obtained from Spices Board, Government of India, Ministry of Commerce and Industry, New Delhi. Seasonal Auto regressive Integrated Moving Average (SARIMA) model was used to forecast the future monthly prices. The SARIMA model, ARIMA(1,1,0)(1,1,1)[12] was identified to be the best model for forecasting the monthly cardamom price according to the minimal Bayesian Information Criterion.","PeriodicalId":220721,"journal":{"name":"THE JOURNAL OF RESEARCH ANGRAU","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"THE JOURNAL OF RESEARCH ANGRAU","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58537/jorangrau.2022.50.4.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The study was undertaken to identify a model for forecasting the price of small cardamom using the data consisting of prices from January 2001 to December 2021 obtained from Spices Board, Government of India, Ministry of Commerce and Industry, New Delhi. Seasonal Auto regressive Integrated Moving Average (SARIMA) model was used to forecast the future monthly prices. The SARIMA model, ARIMA(1,1,0)(1,1,1)[12] was identified to be the best model for forecasting the monthly cardamom price according to the minimal Bayesian Information Criterion.
基于sarima模型的小豆蔻价格预测
进行这项研究的目的是利用2001年1月至2021年12月从印度政府香料委员会、新德里商业和工业部获得的价格数据,确定预测小豆蔻价格的模型。采用季节自动回归综合移动平均(SARIMA)模型预测未来月度价格。根据最小贝叶斯信息准则,确定SARIMA模型ARIMA(1,1,0)(1,1,1)[12]是预测豆蔻月价格的最佳模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信