{"title":"Bandits with budgets","authors":"Richard Combes, Chong Jiang, R. Srikant","doi":"10.1145/2796314.2745847","DOIUrl":null,"url":null,"abstract":"Motivated by online advertising applications, we consider a version of the classical multi-armed bandit problem where there is a cost associated with pulling each arm, and a corresponding budget which limits the number of times that an arm can be pulled. We derive regret bounds on the expected reward in such a bandit problem using a modification of the well-known upper confidence bound algorithm UCB1.","PeriodicalId":415568,"journal":{"name":"52nd IEEE Conference on Decision and Control","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"52nd IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2796314.2745847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39
Abstract
Motivated by online advertising applications, we consider a version of the classical multi-armed bandit problem where there is a cost associated with pulling each arm, and a corresponding budget which limits the number of times that an arm can be pulled. We derive regret bounds on the expected reward in such a bandit problem using a modification of the well-known upper confidence bound algorithm UCB1.