A Novel Methodology to obtain Optimal PI Controller Gains using Multi-gene Genetic Programming for FOPTD Systems

D. Pozo, L. Morales, D. Maldonado, J. Aguilar
{"title":"A Novel Methodology to obtain Optimal PI Controller Gains using Multi-gene Genetic Programming for FOPTD Systems","authors":"D. Pozo, L. Morales, D. Maldonado, J. Aguilar","doi":"10.1109/ETCM.2018.8580262","DOIUrl":null,"url":null,"abstract":"This paper presents a novel method for tuning a PI controller for a first-order plus time delay (FOPTD) system based on a Multi-gene Genetic Programming (MGGP) and a Particle Swarm Optimization (PSO) algorithm. In our approach, the PSO stablishes a set of optimal gains of the controller for a FOPTD system, based on the plant parameters. Then, the MGGP obtains the mathematical equations to estimate the optimal gains determined by PSO. Finally, to validate the methodology proposed, a group of random systems were selected and tested in MATLAB-SIMULINK, using the calculated equations, focused in its behavior with respect to the maximum overshoot (Mp) and the Integral Square Error (ISE).","PeriodicalId":334574,"journal":{"name":"2018 IEEE Third Ecuador Technical Chapters Meeting (ETCM)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Third Ecuador Technical Chapters Meeting (ETCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETCM.2018.8580262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a novel method for tuning a PI controller for a first-order plus time delay (FOPTD) system based on a Multi-gene Genetic Programming (MGGP) and a Particle Swarm Optimization (PSO) algorithm. In our approach, the PSO stablishes a set of optimal gains of the controller for a FOPTD system, based on the plant parameters. Then, the MGGP obtains the mathematical equations to estimate the optimal gains determined by PSO. Finally, to validate the methodology proposed, a group of random systems were selected and tested in MATLAB-SIMULINK, using the calculated equations, focused in its behavior with respect to the maximum overshoot (Mp) and the Integral Square Error (ISE).
一种利用多基因遗传规划获得最优PI控制器增益的新方法
提出了一种基于多基因遗传规划(MGGP)和粒子群优化(PSO)算法的一阶加时滞(FOPTD)系统PI控制器整定方法。在我们的方法中,粒子群算法基于对象参数为FOPTD系统建立了一组最优控制器增益。然后,MGGP得到由粒子群确定的最优增益的数学方程。最后,为了验证所提出的方法,选择了一组随机系统并在MATLAB-SIMULINK中进行了测试,使用计算公式,重点关注其关于最大超调(Mp)和积分平方误差(ISE)的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信