Computational intelligence techniques to detect toxic gas presence

C. Alippi, G. Pelosi, M. Roveri
{"title":"Computational intelligence techniques to detect toxic gas presence","authors":"C. Alippi, G. Pelosi, M. Roveri","doi":"10.1109/CIMSA.2006.250745","DOIUrl":null,"url":null,"abstract":"The detection of toxic gas in industrial environments (performed by means of an array of low-cost on-chip chemical sensors) is a valuable approach to increase daily safety. The aim of this paper is to critically discuss the use of a-priori knowledge in the design of gas sensor systems implementing computational intelligence techniques for signal processing and gas presence detection. The availability of a-priori information about the probability density function of the considered classes as well as about the class separation boundary (Bayes boundary) allow the classifier designer for selecting appropriate condensing and editing techniques to keep under control the computational complexity","PeriodicalId":431033,"journal":{"name":"2006 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIMSA.2006.250745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The detection of toxic gas in industrial environments (performed by means of an array of low-cost on-chip chemical sensors) is a valuable approach to increase daily safety. The aim of this paper is to critically discuss the use of a-priori knowledge in the design of gas sensor systems implementing computational intelligence techniques for signal processing and gas presence detection. The availability of a-priori information about the probability density function of the considered classes as well as about the class separation boundary (Bayes boundary) allow the classifier designer for selecting appropriate condensing and editing techniques to keep under control the computational complexity
计算智能技术检测有毒气体的存在
工业环境中有毒气体的检测(通过一系列低成本的片上化学传感器进行)是提高日常安全的有价值的方法。本文的目的是批判性地讨论在气体传感器系统设计中使用先验知识,实现用于信号处理和气体存在检测的计算智能技术。关于所考虑类的概率密度函数以及类分离边界(贝叶斯边界)的先验信息的可用性允许分类器设计者选择适当的压缩和编辑技术,以控制计算复杂度
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信