Виктор Алексеевич Копытцев, Viktor Alekseevich Kopyttsev, Владимир Гаврилович Михайлов, V. Mikhailov
{"title":"Метод моментов и суммы случайных индикаторов","authors":"Виктор Алексеевич Копытцев, Viktor Alekseevich Kopyttsev, Владимир Гаврилович Михайлов, V. Mikhailov","doi":"10.4213/tm4208","DOIUrl":null,"url":null,"abstract":"С помощью метода моментов выведены две теоремы о нормальной аппроксимации суммы $n$ случайных индикаторов в схеме серий, в которой совместное распределение индикаторов может меняться с ростом $n$. Первая теорема указывает условия сходимости при $n\\to \\infty $ всех моментов к моментам нормального распределения, а вторая теорема дает оценки точности нормальной аппроксимации в равномерной метрике. Для демонстрации эффективности результатов использованы задача о размещении частиц и задача о точности нормальной аппроксимации для числа решений случайных нелинейных включений.","PeriodicalId":134662,"journal":{"name":"Trudy Matematicheskogo Instituta imeni V.A. Steklova","volume":"224 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trudy Matematicheskogo Instituta imeni V.A. Steklova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4213/tm4208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
С помощью метода моментов выведены две теоремы о нормальной аппроксимации суммы $n$ случайных индикаторов в схеме серий, в которой совместное распределение индикаторов может меняться с ростом $n$. Первая теорема указывает условия сходимости при $n\to \infty $ всех моментов к моментам нормального распределения, а вторая теорема дает оценки точности нормальной аппроксимации в равномерной метрике. Для демонстрации эффективности результатов использованы задача о размещении частиц и задача о точности нормальной аппроксимации для числа решений случайных нелинейных включений.