D. Favero, A. Cavaliere, C. D. Santi, M. Borga, W. G. Filho, K. Geens, B. Bakeroot, S. Decoutere, G. Meneghesso, E. Zanoni, M. Meneghini
{"title":"High- Temperature PBTI in Trench-Gate Vertical GaN Power MOSFETs: Role of Border and Semiconductor Traps","authors":"D. Favero, A. Cavaliere, C. D. Santi, M. Borga, W. G. Filho, K. Geens, B. Bakeroot, S. Decoutere, G. Meneghesso, E. Zanoni, M. Meneghini","doi":"10.1109/IRPS48203.2023.10117667","DOIUrl":null,"url":null,"abstract":"For the first time we investigate the positive threshold voltage instability in GaN-based trench gate MOSFETs in the high-temperature regime (150–240 °C). First, by inverse Laplace transform we determine the equivalent distribution of activation energies of the traps responsible for PBTI, with a peak at 0.75 eV from the conduction band of GaN. Second, we demonstrate that the recovery transients have a non-monotonic trend. This result, never described before, is attributed to the interplay between electron de-trapping from border traps, and hole de-trapping from defects in the p-type body layer, located 0.65 eV above the valence band energy of GaN, and preliminary ascribed to gallium vacancies in the semiconductor. Results provide relevant insight for optimizing the high-temperature stability of GaN vertical FETs.","PeriodicalId":159030,"journal":{"name":"2023 IEEE International Reliability Physics Symposium (IRPS)","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Reliability Physics Symposium (IRPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS48203.2023.10117667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
For the first time we investigate the positive threshold voltage instability in GaN-based trench gate MOSFETs in the high-temperature regime (150–240 °C). First, by inverse Laplace transform we determine the equivalent distribution of activation energies of the traps responsible for PBTI, with a peak at 0.75 eV from the conduction band of GaN. Second, we demonstrate that the recovery transients have a non-monotonic trend. This result, never described before, is attributed to the interplay between electron de-trapping from border traps, and hole de-trapping from defects in the p-type body layer, located 0.65 eV above the valence band energy of GaN, and preliminary ascribed to gallium vacancies in the semiconductor. Results provide relevant insight for optimizing the high-temperature stability of GaN vertical FETs.