M. Zakaria, S. R. Kasjoo, A. F. Mahyidin, A. W. Al-Mufti, R. Ayub, U. Hashim
{"title":"Fabrication of SONOS flash memory device by using engineered tunnel barrier technique","authors":"M. Zakaria, S. R. Kasjoo, A. F. Mahyidin, A. W. Al-Mufti, R. Ayub, U. Hashim","doi":"10.1109/SMELEC.2014.6920891","DOIUrl":null,"url":null,"abstract":"Flash memory is a device that used as a tool to store data electrically without external power supply. The charge-trap such as SONOS structure is the most widely used in flash memory technology fabrication due to the advantages of this device in term of scaling and performance characteristic. Conventional Flash memory with thickness 5nm single oxide shows good performance, but suffer leakage current and data retention. To overcome this problem, a SONOS flash memory was fabricated by using techniques that known as Engineered Tunnel Barrier to replace the conventional single oxide used in conventional flash memory. In this project, the total equivalent thickness oxide for all experiments is set at the 8nm to compare the performances. Thus, it will result in a faster write and erase speed. The analysis results will determine the most preferred structure that improved the programming characteristic.","PeriodicalId":268203,"journal":{"name":"2014 IEEE International Conference on Semiconductor Electronics (ICSE2014)","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Semiconductor Electronics (ICSE2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMELEC.2014.6920891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Flash memory is a device that used as a tool to store data electrically without external power supply. The charge-trap such as SONOS structure is the most widely used in flash memory technology fabrication due to the advantages of this device in term of scaling and performance characteristic. Conventional Flash memory with thickness 5nm single oxide shows good performance, but suffer leakage current and data retention. To overcome this problem, a SONOS flash memory was fabricated by using techniques that known as Engineered Tunnel Barrier to replace the conventional single oxide used in conventional flash memory. In this project, the total equivalent thickness oxide for all experiments is set at the 8nm to compare the performances. Thus, it will result in a faster write and erase speed. The analysis results will determine the most preferred structure that improved the programming characteristic.