Model for Network Intrusion Detection Based on Machine Learning

Naazaan Shaheen, Yogendra Singh
{"title":"Model for Network Intrusion Detection Based on Machine Learning","authors":"Naazaan Shaheen, Yogendra Singh","doi":"10.46610/joecs.2022.v07i02.005","DOIUrl":null,"url":null,"abstract":"Intrusion Detection is an important step to ensure security in computer networks. In this paper, a novel model for intrusion detection is presented. The model has been developed using various existing machine learning techniques viz. decision tree, Naive Bayes, KNN and logistic regression techniques. Preexisting database of network intrusion is used to analyze the performance of the proposed model. As seen from the experimental results, the decision tree gives the best outcome with an accuracy of 96%.","PeriodicalId":266054,"journal":{"name":"Journal of Electronics and Communication Systems","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronics and Communication Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46610/joecs.2022.v07i02.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Intrusion Detection is an important step to ensure security in computer networks. In this paper, a novel model for intrusion detection is presented. The model has been developed using various existing machine learning techniques viz. decision tree, Naive Bayes, KNN and logistic regression techniques. Preexisting database of network intrusion is used to analyze the performance of the proposed model. As seen from the experimental results, the decision tree gives the best outcome with an accuracy of 96%.
基于机器学习的网络入侵检测模型
入侵检测是保证计算机网络安全的重要步骤。本文提出了一种新的入侵检测模型。该模型使用了各种现有的机器学习技术,即决策树、朴素贝叶斯、KNN和逻辑回归技术。利用已有的网络入侵数据库对模型进行性能分析。从实验结果来看,决策树给出了最好的结果,准确率达到96%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信