Can we detect Gaussian curvature by counting paths and measuring their length?

Leonardo Andrés Cano, S. A. Carrillo
{"title":"Can we detect Gaussian curvature by counting paths and measuring their length?","authors":"Leonardo Andrés Cano, S. A. Carrillo","doi":"10.18273/revint.v38n1-2020003","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to associate a measure for certain sets ofpaths in the Euclidean planeR2with fixed starting and ending points. Then,working on parameterized surfaces with a specific Riemannian metric, wedefine and calculate the integral of the length over the set ofpaths obtainedas the image of the initial paths inR2under the given parameterization.Moreover, we prove that this integral is given by the averageof the lengthsof the external paths times the measure of the set of paths if,and only if, thesurface has Gaussian curvature equal to zero.","PeriodicalId":402331,"journal":{"name":"Revista Integración","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Integración","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18273/revint.v38n1-2020003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this paper is to associate a measure for certain sets ofpaths in the Euclidean planeR2with fixed starting and ending points. Then,working on parameterized surfaces with a specific Riemannian metric, wedefine and calculate the integral of the length over the set ofpaths obtainedas the image of the initial paths inR2under the given parameterization.Moreover, we prove that this integral is given by the averageof the lengthsof the external paths times the measure of the set of paths if,and only if, thesurface has Gaussian curvature equal to zero.
我们可以通过计算路径和测量它们的长度来检测高斯曲率吗?
本文的目的是将欧几里得平面上的若干路径集与固定的起点和终点联系起来。然后,在具有特定黎曼度量的参数化曲面上,我们定义并计算了在给定参数化下得到的路径集上的长度积分,作为r2中初始路径的图像。此外,我们证明了这个积分是由外路径长度的平均值乘以路径集合的度量给出的,当且仅当曲面的高斯曲率为零。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信