Implicit links based kernel to enrich Support Vector Machine for web page classification

Abdelbadie Belmouhcine, M. Benkhalifa
{"title":"Implicit links based kernel to enrich Support Vector Machine for web page classification","authors":"Abdelbadie Belmouhcine, M. Benkhalifa","doi":"10.1109/SITA.2015.7358417","DOIUrl":null,"url":null,"abstract":"Support Vector Machine (SVM) is a powerful classifier used widely in textual and web classification. It tries to find an hyperplane that separates positive and negative data, maximizes the margin. SVM is a classifier that is based on a kernel whose choice is very critical. We propose in this paper an implicit links based Gaussian kernel that uses an implicit links based distance. This kernel helps enrich SVM for web page classification by involving users' intuitive judgments in the classification. We tested our approach on four subsets of the Open Directory Project (ODP). Results show that implicit links based kernel helps bringing improvements on SVM's results.","PeriodicalId":174405,"journal":{"name":"2015 10th International Conference on Intelligent Systems: Theories and Applications (SITA)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 10th International Conference on Intelligent Systems: Theories and Applications (SITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITA.2015.7358417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Support Vector Machine (SVM) is a powerful classifier used widely in textual and web classification. It tries to find an hyperplane that separates positive and negative data, maximizes the margin. SVM is a classifier that is based on a kernel whose choice is very critical. We propose in this paper an implicit links based Gaussian kernel that uses an implicit links based distance. This kernel helps enrich SVM for web page classification by involving users' intuitive judgments in the classification. We tested our approach on four subsets of the Open Directory Project (ODP). Results show that implicit links based kernel helps bringing improvements on SVM's results.
基于隐式链接核丰富支持向量机网页分类
支持向量机(SVM)是一种功能强大的分类器,广泛应用于文本和网页分类。它试图找到一个分离正数据和负数据的超平面,最大化边距。支持向量机是一种基于核的分类器,它的选择非常关键。本文提出了一种基于隐式链路的高斯核,它使用隐式链路的距离。该内核通过将用户的直观判断引入到分类中,丰富了支持向量机对网页的分类。我们在开放目录项目(ODP)的四个子集上测试了我们的方法。结果表明,基于隐式链接的核有助于改善支持向量机的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信