{"title":"An automated SCADA based system for identification of induction motor bearing fault used in process control operation","authors":"S. Mitra, C. Koley","doi":"10.1109/CIEC.2016.7513756","DOIUrl":null,"url":null,"abstract":"Current paper proposes a system for identifying bearing faults of a 3-phase induction motor operated in process control application along with the presence of other source of vibration, in the same process. Different types of bearing fault identification techniques have been discussed in literature with the analysis of time domain, frequency domain and time-frequency domain based features. The proposed methods were examined under laboratorial set-up keeping rotating speed and or load variation remains unchanged. And the practical situations of external vibrational effect and noises from various sources of process plant also have not been considered in a vast way. This paper delivers a brief idea of the identification of bearing faulty harmonics which are collected by accelerometer during running condition under random variation of both, speed and load of the motor with the presence of non-stationary external vibrations. The study also revealed that, faulty bearing can be identified from the vibration signal, by programming the PLC based system to collect vibration data only when process enters into some predefined situation, and thereafter by analyzing the vibration amplitude using standard deviation the faulty bearing can be identified.","PeriodicalId":443343,"journal":{"name":"2016 2nd International Conference on Control, Instrumentation, Energy & Communication (CIEC)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 2nd International Conference on Control, Instrumentation, Energy & Communication (CIEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIEC.2016.7513756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Current paper proposes a system for identifying bearing faults of a 3-phase induction motor operated in process control application along with the presence of other source of vibration, in the same process. Different types of bearing fault identification techniques have been discussed in literature with the analysis of time domain, frequency domain and time-frequency domain based features. The proposed methods were examined under laboratorial set-up keeping rotating speed and or load variation remains unchanged. And the practical situations of external vibrational effect and noises from various sources of process plant also have not been considered in a vast way. This paper delivers a brief idea of the identification of bearing faulty harmonics which are collected by accelerometer during running condition under random variation of both, speed and load of the motor with the presence of non-stationary external vibrations. The study also revealed that, faulty bearing can be identified from the vibration signal, by programming the PLC based system to collect vibration data only when process enters into some predefined situation, and thereafter by analyzing the vibration amplitude using standard deviation the faulty bearing can be identified.