Error modeling in stereo navigation

L. Matthies, S. Shafer
{"title":"Error modeling in stereo navigation","authors":"L. Matthies, S. Shafer","doi":"10.1109/JRA.1987.1087097","DOIUrl":null,"url":null,"abstract":"In stereo navigation, a mobile robot estimates its position by tracking landmarks with on-board cameras. Previous systems for stereo navigation have suffered from poor accuracy, in part because they relied on scalar models of measurement error in triangulation. Using three-dimensional (3D) Gaussian distributions to model triangulation error is shown to lead to much better performance. How to compute the error model from image correspondences, estimate robot motion between frames, and update the global positions of the robot and the landmarks over time are discussed. Simulations show that, compared to scalar error models, the 3D Gaussian reduces the variance in robot position estimates and better distinguishes rotational from translational motion. A short indoor run with real images supported these conclusions and computed the final robot position to within two percent of distance and one degree of orientation. These results illustrate the importance of error modeling in stereo vision for this and other applications.","PeriodicalId":370047,"journal":{"name":"IEEE J. Robotics Autom.","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1986-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"578","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE J. Robotics Autom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JRA.1987.1087097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 578

Abstract

In stereo navigation, a mobile robot estimates its position by tracking landmarks with on-board cameras. Previous systems for stereo navigation have suffered from poor accuracy, in part because they relied on scalar models of measurement error in triangulation. Using three-dimensional (3D) Gaussian distributions to model triangulation error is shown to lead to much better performance. How to compute the error model from image correspondences, estimate robot motion between frames, and update the global positions of the robot and the landmarks over time are discussed. Simulations show that, compared to scalar error models, the 3D Gaussian reduces the variance in robot position estimates and better distinguishes rotational from translational motion. A short indoor run with real images supported these conclusions and computed the final robot position to within two percent of distance and one degree of orientation. These results illustrate the importance of error modeling in stereo vision for this and other applications.
立体导航中的误差建模
在立体导航中,移动机器人通过跟踪机载摄像头的地标来估计自己的位置。以前的立体导航系统精度不高,部分原因是它们依赖于三角测量误差的标量模型。使用三维(3D)高斯分布来模拟三角测量误差被证明可以带来更好的性能。讨论了如何从图像对应中计算误差模型,估计帧间机器人运动,以及随着时间的推移更新机器人的全局位置和地标。仿真结果表明,与标量误差模型相比,三维高斯模型减少了机器人位置估计的方差,并且更好地区分了旋转和平移运动。用真实图像进行的短时间室内运行支持了这些结论,并计算出机器人的最终位置,误差在2%的距离和1度的方向内。这些结果说明了误差建模在立体视觉和其他应用中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信