The Factorization of a Matrix as the Commutator of Two Matrices

J. M. Smith
{"title":"The Factorization of a Matrix as the Commutator of Two Matrices","authors":"J. M. Smith","doi":"10.6028/JRES.078B.017","DOIUrl":null,"url":null,"abstract":"Let P = f \" + (- I ,,) , the direct sum of the p x p identity matrix and the negative of the q x q ide n­ t ity matrix. The following th eo re m is proved. TH EOHEM: If X = cZ where Z is a 4 x 4 P-orthogonal , P-skew-symmetric matrix and Ie I .;;; 2, there exist matrices A an.d B, both of which are P-orthogollal and P-skew-symmetric, sach that X = AB - BA. Methods for o btaining certain matrices whi c h sati s fy X = AB - BA are given. Methods are a lso give n fo r de terminin g pairs of a nti co mmuting P -o rth\"gona l, P -s kew-symmetri c matrices.","PeriodicalId":166823,"journal":{"name":"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1974-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6028/JRES.078B.017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let P = f " + (- I ,,) , the direct sum of the p x p identity matrix and the negative of the q x q ide n­ t ity matrix. The following th eo re m is proved. TH EOHEM: If X = cZ where Z is a 4 x 4 P-orthogonal , P-skew-symmetric matrix and Ie I .;;; 2, there exist matrices A an.d B, both of which are P-orthogollal and P-skew-symmetric, sach that X = AB - BA. Methods for o btaining certain matrices whi c h sati s fy X = AB - BA are given. Methods are a lso give n fo r de terminin g pairs of a nti co mmuting P -o rth"gona l, P -s kew-symmetri c matrices.
一个矩阵作为两个矩阵的对易子的分解
设P = f ' ' + (- I,,) P × P单位矩阵与负的q × q矩阵的正和。证明了下面的定理。EOHEM:如果X = cZ,其中Z是一个4 X 4的p -正交,p -斜对称矩阵,Ie I .;;;2,存在矩阵A和。d B,它们都是p正交和p偏对称的,所以X = AB - BA。给出了满足X = AB - BA的若干矩阵的求取方法。本文还给出了一种方法,用于确定变换P - 0 - 1、P - 1、P - 2等已知对称矩阵的非对称对。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信