PID control design for the pressure regulation of PEM fuel cell

Pruthiraj Swain, D. Jena
{"title":"PID control design for the pressure regulation of PEM fuel cell","authors":"Pruthiraj Swain, D. Jena","doi":"10.1109/RDCAPE.2015.7281411","DOIUrl":null,"url":null,"abstract":"The well-known nonlinear fifth-order model of a proton exchange membrane (PEM, also known as polymer electrolyte membrane) fuel cell (PEMFC) seems to be quite complex. In this paper, we derived the linearized model of the original nonlinear system in non-coordinate standard form considering proper initial conditions and equilibrium point. Large deviations in pressure can cause severe membrane damage in the fuel cell. Conventional Proportional-Integralderivative (PID) controllers are used to regulate the pressure change of hydrogen and oxygen at the desired value despite of changes in the fuel cell current. As the equilibrium point at steady state becomes unique, Jacobian linearization of the original system has been done and the state space matrices of the linearized system were found using MATLAB Symbolic ToolBox. The linearized system is asymptotically stable as well as controllable and observable. During the control design, hydrogen and oxygen partial flow rates are defined as the control variables and the hydrogen and oxygen pressure difference are taken as the control objectives. The simulation result shows that the linearized PEMFC model with conventional PID controller where the controller parameters are tuned using Zeigler-Nichols (Z-N) having acceptable control performance.","PeriodicalId":403256,"journal":{"name":"2015 International Conference on Recent Developments in Control, Automation and Power Engineering (RDCAPE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Recent Developments in Control, Automation and Power Engineering (RDCAPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RDCAPE.2015.7281411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

The well-known nonlinear fifth-order model of a proton exchange membrane (PEM, also known as polymer electrolyte membrane) fuel cell (PEMFC) seems to be quite complex. In this paper, we derived the linearized model of the original nonlinear system in non-coordinate standard form considering proper initial conditions and equilibrium point. Large deviations in pressure can cause severe membrane damage in the fuel cell. Conventional Proportional-Integralderivative (PID) controllers are used to regulate the pressure change of hydrogen and oxygen at the desired value despite of changes in the fuel cell current. As the equilibrium point at steady state becomes unique, Jacobian linearization of the original system has been done and the state space matrices of the linearized system were found using MATLAB Symbolic ToolBox. The linearized system is asymptotically stable as well as controllable and observable. During the control design, hydrogen and oxygen partial flow rates are defined as the control variables and the hydrogen and oxygen pressure difference are taken as the control objectives. The simulation result shows that the linearized PEMFC model with conventional PID controller where the controller parameters are tuned using Zeigler-Nichols (Z-N) having acceptable control performance.
PEM燃料电池压力调节的PID控制设计
众所周知,质子交换膜(PEM,又称聚合物电解质膜)燃料电池(PEMFC)的非线性五阶模型非常复杂。本文考虑适当的初始条件和平衡点,导出了原非线性系统的非坐标标准形式的线性化模型。压力的大偏差会导致燃料电池的膜严重损坏。采用传统的比例积分导数(PID)控制器,在燃料电池电流变化的情况下,将氢气和氧气的压力变化调节到所需值。随着稳态平衡点的唯一性,对原系统进行雅可比线性化,利用MATLAB符号工具箱求出线性化后系统的状态空间矩阵。线性化后的系统是渐近稳定的、可控的、可观察的。在控制设计中,以氢、氧分流量为控制变量,以氢、氧压差为控制目标。仿真结果表明,采用Zeigler-Nichols (Z-N)整定控制器参数的线性化PEMFC模型具有良好的控制性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信