Super-resolution video reconstruction based on both local and global information

I-Hsien Lee, S. Tseng, N. Bose
{"title":"Super-resolution video reconstruction based on both local and global information","authors":"I-Hsien Lee, S. Tseng, N. Bose","doi":"10.1109/CCECE.2010.5575208","DOIUrl":null,"url":null,"abstract":"Although super-resolution (SR) methods have been successfully used to improve the resolution of video content, these methods estimate high resolution (HR) frames without explicitly use local information. Instead, they minimize the sum of difference between acquired low resolution (LR) images and observation model. On the contrary, adaptive kernel regression estimates each pixel of HR frames independently. It does not consider global optimum while estimating HR frames. In this paper, we proposed an idea of employing adaptive kernel regression on SR methods to improve the quality of super-resolved video frames. It is shown that the proposed idea can provide results with better visual quality and Peak Signal-to-Noise Ratio (PSNR).","PeriodicalId":325063,"journal":{"name":"CCECE 2010","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CCECE 2010","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE.2010.5575208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Although super-resolution (SR) methods have been successfully used to improve the resolution of video content, these methods estimate high resolution (HR) frames without explicitly use local information. Instead, they minimize the sum of difference between acquired low resolution (LR) images and observation model. On the contrary, adaptive kernel regression estimates each pixel of HR frames independently. It does not consider global optimum while estimating HR frames. In this paper, we proposed an idea of employing adaptive kernel regression on SR methods to improve the quality of super-resolved video frames. It is shown that the proposed idea can provide results with better visual quality and Peak Signal-to-Noise Ratio (PSNR).
基于局部和全局信息的超分辨率视频重建
虽然超分辨率(SR)方法已经成功地用于提高视频内容的分辨率,但这些方法在估计高分辨率(HR)帧时没有明确使用局部信息。相反,它们最小化了获取的低分辨率(LR)图像与观测模型之间的差值之和。相反,自适应核回归独立估计HR帧的每个像素。在估计HR框架时不考虑全局最优。在本文中,我们提出了一种基于自适应核回归的方法来提高超分辨视频帧的质量。实验结果表明,该方法具有较好的视觉质量和峰值信噪比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信