Optimization of Spiral Scanning Center Error Based on Differential Confocal

Jun Huang, Yuguo Cui, Jun Xiang
{"title":"Optimization of Spiral Scanning Center Error Based on Differential Confocal","authors":"Jun Huang, Yuguo Cui, Jun Xiang","doi":"10.1109/3M-NANO56083.2022.9941572","DOIUrl":null,"url":null,"abstract":"A spiral scanning center error optimization method based on differential confocal (ODC) is proposed, allowing for high-precision and high-efficiency non-contact measurement of microstructure surface topography. To begin, a probe centering method based on grating rotation successive approximation is designed to reduce the centering error of 3D shape measurement during spiral scanning. The surface morphology of the standard sample was then measured using an experimental platform based on the ODC principle. The center error is within $0.75\\ \\mu\\mathrm{m}$, and the maximum deviation is within 1.4067%, which is consistent with the commercial white light interferometer. This method has a lot of potential for accurate and efficient 3D surface topography measurement.","PeriodicalId":370631,"journal":{"name":"2022 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","volume":"207 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3M-NANO56083.2022.9941572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A spiral scanning center error optimization method based on differential confocal (ODC) is proposed, allowing for high-precision and high-efficiency non-contact measurement of microstructure surface topography. To begin, a probe centering method based on grating rotation successive approximation is designed to reduce the centering error of 3D shape measurement during spiral scanning. The surface morphology of the standard sample was then measured using an experimental platform based on the ODC principle. The center error is within $0.75\ \mu\mathrm{m}$, and the maximum deviation is within 1.4067%, which is consistent with the commercial white light interferometer. This method has a lot of potential for accurate and efficient 3D surface topography measurement.
基于差共焦的螺旋扫描中心误差优化
提出了一种基于差共焦(ODC)的螺旋扫描中心误差优化方法,实现了微结构表面形貌的高精度、高效率非接触测量。首先,设计了一种基于光栅旋转逐次逼近的探头定心方法,以减小螺旋扫描过程中三维形状测量的定心误差。然后使用基于ODC原理的实验平台测量标准样品的表面形貌。中心误差在$0.75\ \mu\mathrm{m}$以内,最大偏差在1.4067%以内,与商用白光干涉仪一致。该方法在精确、高效的三维表面形貌测量方面具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信