{"title":"The Function of Fission Yeast Rho1-GEFs in the Control of Cell Growth and Division","authors":"Tomás Edreira, E. Manjón, Y. Sánchez","doi":"10.5772/INTECHOPEN.75913","DOIUrl":null,"url":null,"abstract":"Guanine nucleotide exchange factors (GEFs) are directly responsible for the activation of Rho-family GTPases in response to physical and chemical stimuli and ultimately regulate numerous cellular responses such as polarized growth, morphogenesis, and movement. The GEF proteins are characterized by a Dbl-homology (DH) domain that contacts the Rho GTPases, to catalyzing nucleotide exchange, and an associated Pleckstrin homology (PH) domain, which fine-tunes the exchange process by a variety of mechanisms related to the binding of phosphoinositides. Most GEFs are divergent in regions outside the DH/ PH module and contain additional protein-protein or lipid-protein interaction domains that presumably dictate unique cellular functions. Fission yeast Rho1-GEFs act as a link between growth processes and the cell cycle machinery. In this chapter, we focus on the recent leaps in our understanding of how Rho1-GEFs control interphase and cytokinesis in fission yeast. Furthermore, we will go beyond mitosis and highlight the unexpected roles of Rho1-GEFs in the DNA damage response. in cell division. Double-mutant and phenotypic complementation results suggest that Rgf1p and Rgf3p are not functionally exchangeable. Disruption of rgf1 + in an rgf3 mutant ( ehs2-1 ) produced viable cells at 28°C but not at 37°C,","PeriodicalId":181544,"journal":{"name":"Peripheral Membrane Proteins","volume":"323 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Peripheral Membrane Proteins","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.75913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Guanine nucleotide exchange factors (GEFs) are directly responsible for the activation of Rho-family GTPases in response to physical and chemical stimuli and ultimately regulate numerous cellular responses such as polarized growth, morphogenesis, and movement. The GEF proteins are characterized by a Dbl-homology (DH) domain that contacts the Rho GTPases, to catalyzing nucleotide exchange, and an associated Pleckstrin homology (PH) domain, which fine-tunes the exchange process by a variety of mechanisms related to the binding of phosphoinositides. Most GEFs are divergent in regions outside the DH/ PH module and contain additional protein-protein or lipid-protein interaction domains that presumably dictate unique cellular functions. Fission yeast Rho1-GEFs act as a link between growth processes and the cell cycle machinery. In this chapter, we focus on the recent leaps in our understanding of how Rho1-GEFs control interphase and cytokinesis in fission yeast. Furthermore, we will go beyond mitosis and highlight the unexpected roles of Rho1-GEFs in the DNA damage response. in cell division. Double-mutant and phenotypic complementation results suggest that Rgf1p and Rgf3p are not functionally exchangeable. Disruption of rgf1 + in an rgf3 mutant ( ehs2-1 ) produced viable cells at 28°C but not at 37°C,