Perbandingan Metode Collaborative Filtering dan Hybrid Semantic Similarity

Imam Fahrurrozi, Estu Muh Dwi Admoko, Anang Susilo
{"title":"Perbandingan Metode Collaborative Filtering dan Hybrid Semantic Similarity","authors":"Imam Fahrurrozi, Estu Muh Dwi Admoko, Anang Susilo","doi":"10.22146/JNTT.44938","DOIUrl":null,"url":null,"abstract":"Recommender system is a component which has been developed for online commerce purposes. In this issue, one of the popular methods that has been widely used is collaborative filtering. However, this method has some drawbacks and needs to be improved. Therefore, in this research a combination of Collaborative Filtering (CF) and semantic similarity method has been compare with original CF, and the result expected reducing some deficiencies on the original collaborative filtering method. Based on the performance tests, the results conclude that the combination can reduce some weaknesses on the original collaborative filtering, especially on the cold-start item and sparsity issue.","PeriodicalId":159255,"journal":{"name":"Jurnal Nasional Teknologi Terapan (JNTT)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Nasional Teknologi Terapan (JNTT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/JNTT.44938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recommender system is a component which has been developed for online commerce purposes. In this issue, one of the popular methods that has been widely used is collaborative filtering. However, this method has some drawbacks and needs to be improved. Therefore, in this research a combination of Collaborative Filtering (CF) and semantic similarity method has been compare with original CF, and the result expected reducing some deficiencies on the original collaborative filtering method. Based on the performance tests, the results conclude that the combination can reduce some weaknesses on the original collaborative filtering, especially on the cold-start item and sparsity issue.
基于混合语义相似度的协同过滤方法
推荐系统是为在线商务而开发的一个组件。在这个问题上,广泛使用的一种流行的方法是协同过滤。然而,这种方法有一些缺点,需要改进。因此,本研究将协同过滤(CF)与语义相似度相结合的方法与原有的协同过滤方法进行了比较,结果有望减少原有协同过滤方法的一些不足。基于性能测试,结果表明,该组合能够有效地克服原有协同过滤方法在冷启动项和稀疏性问题上的不足。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信