Scheduling Traffic Matrices On General Switch Fabrics

Xiang Wu, A. Prakash, M. Mohiyuddin, A. Aziz
{"title":"Scheduling Traffic Matrices On General Switch Fabrics","authors":"Xiang Wu, A. Prakash, M. Mohiyuddin, A. Aziz","doi":"10.1109/HOTI.2006.22","DOIUrl":null,"url":null,"abstract":"A traffic matrix is an |S| times |T| matrix M, where Mij is a non-negative integer encoding the number of packets to be transferred from source i to sink j. Chang et al. (2001) have shown how to efficiently compute an optimum schedule for transferring packets from sources to sinks when the sources and sinks are connected via a rearrangeable fabric such as crossbar. We address the same problem when the switch fabric is not rearrangeable. Specifically, we (1) prove that the optimum scheduling problem is NP-hard for general switch fabrics, (2) identify a sub-class of fabrics for which the problem is polynomial-time solvable, and (3) develop a heuristic for the general case","PeriodicalId":288349,"journal":{"name":"14th IEEE Symposium on High-Performance Interconnects (HOTI'06)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th IEEE Symposium on High-Performance Interconnects (HOTI'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HOTI.2006.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A traffic matrix is an |S| times |T| matrix M, where Mij is a non-negative integer encoding the number of packets to be transferred from source i to sink j. Chang et al. (2001) have shown how to efficiently compute an optimum schedule for transferring packets from sources to sinks when the sources and sinks are connected via a rearrangeable fabric such as crossbar. We address the same problem when the switch fabric is not rearrangeable. Specifically, we (1) prove that the optimum scheduling problem is NP-hard for general switch fabrics, (2) identify a sub-class of fabrics for which the problem is polynomial-time solvable, and (3) develop a heuristic for the general case
在一般交换结构上调度流量矩阵
流量矩阵是一个|S| times |T|矩阵M,其中Mij是一个非负整数,编码从源i传输到接收器j的数据包数量。Chang等人(2001)展示了当源和接收器通过可重新排列的结构(如crossbar)连接时,如何有效地计算从源到接收器传输数据包的最佳调度。当交换机结构不可重新排列时,我们解决了同样的问题。具体来说,我们(1)证明了最优调度问题对于一般的交换结构是np困难的,(2)确定了问题是多项式时间可解的fabric子类,(3)开发了一般情况下的启发式
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信