PERBANDINGAN AKURASI ALGORITMA NAÏVE BAYES, K-NN DAN SVM DALAM MEMPREDIKSI PENERIMAAN PEGAWAI

Novendra Adisaputra Sinaga, B. Hayadi, Zakarias Situmorang
{"title":"PERBANDINGAN AKURASI ALGORITMA NAÏVE BAYES, K-NN DAN SVM DALAM MEMPREDIKSI PENERIMAAN PEGAWAI","authors":"Novendra Adisaputra Sinaga, B. Hayadi, Zakarias Situmorang","doi":"10.37600/tekinkom.v5i1.446","DOIUrl":null,"url":null,"abstract":"To supporting academic and non-academic activities, the Polytechnic Business Indonesian (PBI) must be supported by employees with reliable Human Resources (HRD) who have good behavior, good abilities and can complete work professionally and responsibly. Conventional techniques for analyzing existing large amounts of data cannot be handled which is the background for the emergence of a new branch of science to overcome the problem of extracting important information from data sets, which is called Data Mining. Utilizing methods to classify data by utilizing methods including: Naïve Bayes method, K-Nearest Neighbor (K-NN) and Supervise Vector Machine (SVM). From this research, in Predicting Applicants Graduation at PBI, the SVM method is better than Naïve Bayes and K-NN. With 33 test data used, SVM has 84.9% accuracy, 85.1% precision while K-NN has 81.8% accuracy, 84.1% precision and Naïve Bayes has 78.8% accuracy and 80.1% precision.","PeriodicalId":365934,"journal":{"name":"Jurnal Teknik Informasi dan Komputer (Tekinkom)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknik Informasi dan Komputer (Tekinkom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37600/tekinkom.v5i1.446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To supporting academic and non-academic activities, the Polytechnic Business Indonesian (PBI) must be supported by employees with reliable Human Resources (HRD) who have good behavior, good abilities and can complete work professionally and responsibly. Conventional techniques for analyzing existing large amounts of data cannot be handled which is the background for the emergence of a new branch of science to overcome the problem of extracting important information from data sets, which is called Data Mining. Utilizing methods to classify data by utilizing methods including: Naïve Bayes method, K-Nearest Neighbor (K-NN) and Supervise Vector Machine (SVM). From this research, in Predicting Applicants Graduation at PBI, the SVM method is better than Naïve Bayes and K-NN. With 33 test data used, SVM has 84.9% accuracy, 85.1% precision while K-NN has 81.8% accuracy, 84.1% precision and Naïve Bayes has 78.8% accuracy and 80.1% precision.
准确度比较了NAIVE BAYES, K-NN和SVM对员工录取的预测
为了支持学术和非学术活动,印尼商业理工学院(PBI)必须有可靠的人力资源(HRD)支持,这些人力资源(HRD)具有良好的行为,良好的能力,能够专业和负责地完成工作。传统的分析现有大量数据的技术无法处理,这是克服从数据集中提取重要信息问题的一门新的科学分支的出现的背景,这门科学被称为数据挖掘。利用方法对数据进行分类,包括:Naïve贝叶斯方法、k -最近邻(K-NN)和监督向量机(SVM)。从本研究来看,在预测PBI申请者毕业情况方面,SVM方法优于Naïve贝叶斯和K-NN。使用33个测试数据,SVM的准确率为84.9%,精度为85.1%,K-NN的准确率为81.8%,精度为84.1%,Naïve贝叶斯的准确率为78.8%,精度为80.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信