Contingent Claims Analysis of Sovereign Default Risk in the Eurozone

Dennis Kahlert, N. Wagner, Ludwig Weipert
{"title":"Contingent Claims Analysis of Sovereign Default Risk in the Eurozone","authors":"Dennis Kahlert, N. Wagner, Ludwig Weipert","doi":"10.2139/ssrn.2957385","DOIUrl":null,"url":null,"abstract":"We study sovereign default risk as measured by credit default swap (CDS) spreads of Eurozone member states between 2008 and 2016. Applying a structural credit risk model we analyze to what extent contingent claims analysis can explain spreads given fundamental balance sheet information. First results confirm that market implied default risk is hardly explainable by available fundamentals. We therefore model the asset value with a jump-diffusion process, which we calibrate to market implied default probabilities. The resulting jump intensities are substantial for both, distressed as well as non-distressed countries. By extending the jump-diffusion model and considering the first-passage time default possibility, our model is able to represent more realistic proportions of jump and pure diffusion risk. Including the first-passage time feature and analyzing conditional default probabilities via correlated jump-diffusion processes further contributes to the analysis of credit contagion and systemic risk. Our approach documents that the largest systemic risk component of the periphery comes from Italy, the smallest from Ireland.","PeriodicalId":360770,"journal":{"name":"ERN: Debt; Debt Management (Topic)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Debt; Debt Management (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2957385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study sovereign default risk as measured by credit default swap (CDS) spreads of Eurozone member states between 2008 and 2016. Applying a structural credit risk model we analyze to what extent contingent claims analysis can explain spreads given fundamental balance sheet information. First results confirm that market implied default risk is hardly explainable by available fundamentals. We therefore model the asset value with a jump-diffusion process, which we calibrate to market implied default probabilities. The resulting jump intensities are substantial for both, distressed as well as non-distressed countries. By extending the jump-diffusion model and considering the first-passage time default possibility, our model is able to represent more realistic proportions of jump and pure diffusion risk. Including the first-passage time feature and analyzing conditional default probabilities via correlated jump-diffusion processes further contributes to the analysis of credit contagion and systemic risk. Our approach documents that the largest systemic risk component of the periphery comes from Italy, the smallest from Ireland.
欧元区主权违约风险的或有债权分析
我们研究了2008年至2016年欧元区成员国信用违约互换(CDS)息差衡量的主权违约风险。应用结构信用风险模型,我们分析了或有债权分析在多大程度上可以解释给定基本资产负债表信息的价差。第一个结果证实,市场隐含的违约风险很难用现有的基本面来解释。因此,我们用跳跃-扩散过程对资产价值进行建模,并根据市场隐含违约概率对其进行校准。由此产生的跳升强度对陷入困境的国家和非陷入困境的国家都是巨大的。通过对跳跃-扩散模型的扩展,并考虑首次通过时间的违约可能性,我们的模型能够更真实地表示跳跃风险和纯扩散风险的比例。纳入首次通过时间特征,并通过相关跳跃-扩散过程分析条件违约概率,有助于进一步分析信用传染和系统性风险。我们的方法证明,外围国家最大的系统性风险来自意大利,最小的来自爱尔兰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信