Combining Information Extratction for Text Mining by Using Morphological Patterns and Knowledge Discovery Using Inductive Logic Programming

A. Christy, P. Thambidurai
{"title":"Combining Information Extratction for Text Mining by Using Morphological Patterns and Knowledge Discovery Using Inductive Logic Programming","authors":"A. Christy, P. Thambidurai","doi":"10.1109/ISCIII.2007.367362","DOIUrl":null,"url":null,"abstract":"This paper introduces concepts and a rule-based model for information extraction (IE) strategy using unsupervised algorithm and inductive learning in a top-down fashion. We have used the natural language processing techniques for identifying the morphological patterns (features) and for constructing patterns based on which the necessary information is extracted. The extracted information is then used to discover knowledge in the form of if-then rules. We have considered the technical abstracts of two different domains, by relating the information extracted from the abstract part with the information provided in the conclusion part. The information gain is found as the result of knowledge discovery and we have found our system producing an accuracy of 90%.","PeriodicalId":314768,"journal":{"name":"2007 International Symposium on Computational Intelligence and Intelligent Informatics","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Symposium on Computational Intelligence and Intelligent Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCIII.2007.367362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces concepts and a rule-based model for information extraction (IE) strategy using unsupervised algorithm and inductive learning in a top-down fashion. We have used the natural language processing techniques for identifying the morphological patterns (features) and for constructing patterns based on which the necessary information is extracted. The extracted information is then used to discover knowledge in the form of if-then rules. We have considered the technical abstracts of two different domains, by relating the information extracted from the abstract part with the information provided in the conclusion part. The information gain is found as the result of knowledge discovery and we have found our system producing an accuracy of 90%.
基于形态模式的文本挖掘信息提取与基于归纳逻辑规划的知识发现相结合
本文介绍了信息抽取(IE)策略的概念和基于规则的模型,该策略采用自顶向下的无监督算法和归纳学习。我们使用自然语言处理技术来识别形态模式(特征),并构建基于该模式提取必要信息的模式。然后将提取的信息用于以if-then规则的形式发现知识。通过将从摘要部分提取的信息与结论部分提供的信息联系起来,我们考虑了两个不同领域的技术摘要。信息增益是知识发现的结果,我们发现我们的系统产生了90%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信