Survey of Machine Learning for Electronic Design Automation

Kevin Immanuel Gubbi, Sayed Aresh Beheshti-Shirazi, T. Sheaves, Soheil Salehi, Sai Manoj Pudukotai Dinakarrao, S. Rafatirad, Avesta Sasan, H. Homayoun
{"title":"Survey of Machine Learning for Electronic Design Automation","authors":"Kevin Immanuel Gubbi, Sayed Aresh Beheshti-Shirazi, T. Sheaves, Soheil Salehi, Sai Manoj Pudukotai Dinakarrao, S. Rafatirad, Avesta Sasan, H. Homayoun","doi":"10.1145/3526241.3530834","DOIUrl":null,"url":null,"abstract":"An increase in demand for semiconductor ICs, recent advancements in machine learning, and the slowing down of Moore's law have all contributed to the increased interest in using Machine Learning (ML) to enhance Electronic Design Automation (EDA) and Computer-Aided Design (CAD) tools and processes. This paper provides a comprehensive survey of available EDA and CAD tools, methods, processes, and techniques for Integrated Circuits (ICs) that use machine learning algorithms. The ML-based EDA/CAD tools are classified based on the IC design steps. They are utilized in Synthesis, Physical Design (Floorplanning, Placement, Clock Tree Synthesis, Routing), IR drop analysis, Static Timing Analysis (STA), Design for Test (DFT), Power Delivery Network analysis, and Sign-off. The current landscape of ML-based VLSI-CAD tools, current trends, and future perspectives of ML in VLSI-CAD are also discussed.","PeriodicalId":188228,"journal":{"name":"Proceedings of the Great Lakes Symposium on VLSI 2022","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Great Lakes Symposium on VLSI 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3526241.3530834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

An increase in demand for semiconductor ICs, recent advancements in machine learning, and the slowing down of Moore's law have all contributed to the increased interest in using Machine Learning (ML) to enhance Electronic Design Automation (EDA) and Computer-Aided Design (CAD) tools and processes. This paper provides a comprehensive survey of available EDA and CAD tools, methods, processes, and techniques for Integrated Circuits (ICs) that use machine learning algorithms. The ML-based EDA/CAD tools are classified based on the IC design steps. They are utilized in Synthesis, Physical Design (Floorplanning, Placement, Clock Tree Synthesis, Routing), IR drop analysis, Static Timing Analysis (STA), Design for Test (DFT), Power Delivery Network analysis, and Sign-off. The current landscape of ML-based VLSI-CAD tools, current trends, and future perspectives of ML in VLSI-CAD are also discussed.
电子设计自动化中的机器学习研究综述
半导体集成电路需求的增加、机器学习的最新进展以及摩尔定律的放缓,都促进了人们对使用机器学习(ML)来增强电子设计自动化(EDA)和计算机辅助设计(CAD)工具和流程的兴趣的增加。本文提供了使用机器学习算法的集成电路(ic)的可用EDA和CAD工具,方法,过程和技术的全面调查。基于机器学习的EDA/CAD工具根据集成电路设计步骤进行了分类。它们用于综合、物理设计(平面规划、布局、时钟树综合、路由)、IR下降分析、静态时序分析(STA)、测试设计(DFT)、电力输送网络分析和签字。本文还讨论了基于ML的VLSI-CAD工具的现状、当前趋势以及ML在VLSI-CAD中的未来前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信