Comparison of coplanar waveguide models at millimetre wave frequencies

G. Phung, U. Arz, W. Heinrich
{"title":"Comparison of coplanar waveguide models at millimetre wave frequencies","authors":"G. Phung, U. Arz, W. Heinrich","doi":"10.1109/SPI54345.2022.9874929","DOIUrl":null,"url":null,"abstract":"This paper investigates an improved empirical model predicting the propagation characteristics of coplanar waveguides (CPW) at G band based on a conventional analytical CPW model. A comparison with another quasi-analytic CPW model and fullwave em simulations is presented. The comparison results demonstrate that the improved CPW model shows excellent agreement with measurements on different substrate materials up to 220 GHz. This means that, for the first time, a comprehensive and efficient CPW description at higher frequency ranges up to G band is available. This improved CPW model can be applied and used during the design cycle of hybrid integrated circuits (ICs), monolithic microwave integrated circuits (MMICs) and printed circuits board (PCBs). Moreover, the enhanced accuracy of the improved CPW model can help to reduce uncertainties in on-wafer CPW-based measurements.","PeriodicalId":285253,"journal":{"name":"2022 IEEE 26th Workshop on Signal and Power Integrity (SPI)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 26th Workshop on Signal and Power Integrity (SPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPI54345.2022.9874929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper investigates an improved empirical model predicting the propagation characteristics of coplanar waveguides (CPW) at G band based on a conventional analytical CPW model. A comparison with another quasi-analytic CPW model and fullwave em simulations is presented. The comparison results demonstrate that the improved CPW model shows excellent agreement with measurements on different substrate materials up to 220 GHz. This means that, for the first time, a comprehensive and efficient CPW description at higher frequency ranges up to G band is available. This improved CPW model can be applied and used during the design cycle of hybrid integrated circuits (ICs), monolithic microwave integrated circuits (MMICs) and printed circuits board (PCBs). Moreover, the enhanced accuracy of the improved CPW model can help to reduce uncertainties in on-wafer CPW-based measurements.
毫米波频率下共面波导模型的比较
本文在传统的共面波导解析模型的基础上,研究了一种改进的共面波导G波段传播特性预测经验模型。并与另一种拟解析CPW模型和全波电磁模拟进行了比较。对比结果表明,改进的CPW模型与不同衬底材料的测量结果具有良好的一致性,最高可达220 GHz。这意味着,首次可以在更高的频率范围内获得全面有效的CPW描述,最高可达G波段。这种改进的CPW模型可以应用于混合集成电路(ic)、单片微波集成电路(mmic)和印刷电路板(pcb)的设计周期。此外,改进的CPW模型精度的提高有助于减少基于晶圆上CPW测量的不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信