Orthogonalization Principle for Haptic Interaction

J. Ramirez-Zamora, O. Dominguez-Ramirez, G. Sepúlveda-Cervantes, M. I. Rivera-Gonzalez
{"title":"Orthogonalization Principle for Haptic Interaction","authors":"J. Ramirez-Zamora, O. Dominguez-Ramirez, G. Sepúlveda-Cervantes, M. I. Rivera-Gonzalez","doi":"10.1109/ICMEAE55138.2021.00020","DOIUrl":null,"url":null,"abstract":"Haptic exploration for high precision applications such as surgical training stations, represent a challenge in kinesthetic force feedback methods with deformable virtual objects. In this contribution, a methodology to compute the contact forces for haptic interfaces with high performance, is presented to define the force in the human interaction with the virtual environment. To this end, the method is based on the orthogonal decomposition principle applied to robot force controllers, in this case, to generate deformable viscoelastic and tangent friction properties on the virtual surface, during haptic exploration. The dynamics of the normal plane is defined by a spring-damper system, and the dynamics of the tangent plane from a viscous-Coulomb friction model. The experimental platform corresponds to a haptic device based on the impedance principle (compute of force as a function of the movement) of 6 degrees of freedom, 3 degrees of freedom fully actuated for position and force control. The interaction task consists of two phases: i) numerical validation in Matlab, the forward and inverse kinematics of the position and veocity of the haptic device are used., and ii) validation in a virtual environment programmed in CHAI 3D and Visual C++, described by a virtual sphere with deformable and tangent dynamics.","PeriodicalId":188801,"journal":{"name":"2021 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEAE55138.2021.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Haptic exploration for high precision applications such as surgical training stations, represent a challenge in kinesthetic force feedback methods with deformable virtual objects. In this contribution, a methodology to compute the contact forces for haptic interfaces with high performance, is presented to define the force in the human interaction with the virtual environment. To this end, the method is based on the orthogonal decomposition principle applied to robot force controllers, in this case, to generate deformable viscoelastic and tangent friction properties on the virtual surface, during haptic exploration. The dynamics of the normal plane is defined by a spring-damper system, and the dynamics of the tangent plane from a viscous-Coulomb friction model. The experimental platform corresponds to a haptic device based on the impedance principle (compute of force as a function of the movement) of 6 degrees of freedom, 3 degrees of freedom fully actuated for position and force control. The interaction task consists of two phases: i) numerical validation in Matlab, the forward and inverse kinematics of the position and veocity of the haptic device are used., and ii) validation in a virtual environment programmed in CHAI 3D and Visual C++, described by a virtual sphere with deformable and tangent dynamics.
触觉交互的正交化原理
高精度应用(如外科训练站)的触觉探索,对具有可变形虚拟物体的动觉力反馈方法提出了挑战。在这篇贡献中,提出了一种计算高性能触觉界面接触力的方法,以定义人与虚拟环境交互中的力。为此,该方法基于正交分解原理应用于机器人力控制器,在此情况下,在触觉探索过程中生成虚拟表面上的可变形粘弹性和切线摩擦特性。法向面的动力学由弹簧-阻尼器系统定义,切向面的动力学由粘-库仑摩擦模型定义。实验平台对应一个基于阻抗原理(力作为运动函数计算)的6自由度触觉装置,3自由度完全驱动,用于位置和力的控制。交互任务包括两个阶段:1)在Matlab中进行数值验证,利用触觉装置的位置和速度的正运动学和逆运动学。ii)在CHAI 3D和Visual c++编程的虚拟环境中进行验证,该环境由具有可变形和切线动态的虚拟球体描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信