Energy detection based cooperative spectrum sensing using fuzzy conditional entropy maximization

A. Banerjee, S. Maity
{"title":"Energy detection based cooperative spectrum sensing using fuzzy conditional entropy maximization","authors":"A. Banerjee, S. Maity","doi":"10.1109/ANTS.2014.7057228","DOIUrl":null,"url":null,"abstract":"An Energy detection based cooperative spectrum sensing for cognitive radio system is proposed in this paper using fuzzy conditional entropy maximization. Instead of using conventional single threshold in energy value, this paper deals with utilization of multiple thresholds to improve the sensing reliability. The basic objective here is to calculate an optimal set of fuzzy parameters that would maximize the fuzzy conditional entropy and Differential Evolution algorithm is used for this purpose. Multiple threshold values are calculated using these optimal parameters. Simulation results highlight improved performance of the proposed scheme by providing high detection probability at low diversity and using less number of samples. Performance results are compared with the conventional cooperative energy detector methods to highlight the significance of the proposed scheme.","PeriodicalId":333503,"journal":{"name":"2014 IEEE International Conference on Advanced Networks and Telecommuncations Systems (ANTS)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Advanced Networks and Telecommuncations Systems (ANTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANTS.2014.7057228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

An Energy detection based cooperative spectrum sensing for cognitive radio system is proposed in this paper using fuzzy conditional entropy maximization. Instead of using conventional single threshold in energy value, this paper deals with utilization of multiple thresholds to improve the sensing reliability. The basic objective here is to calculate an optimal set of fuzzy parameters that would maximize the fuzzy conditional entropy and Differential Evolution algorithm is used for this purpose. Multiple threshold values are calculated using these optimal parameters. Simulation results highlight improved performance of the proposed scheme by providing high detection probability at low diversity and using less number of samples. Performance results are compared with the conventional cooperative energy detector methods to highlight the significance of the proposed scheme.
基于模糊条件熵最大化的能量检测协同频谱感知
基于模糊条件熵最大化,提出了一种基于能量检测的认知无线电协同频谱感知方法。本文采用多阈值的方法来提高传感器的可靠性,而不是传统的单阈值。这里的基本目标是计算一组最优模糊参数,使模糊条件熵最大化,差分进化算法用于此目的。使用这些最优参数计算多个阈值。仿真结果表明,该方法在低分集和使用较少的样本数量下提供较高的检测概率,从而提高了性能。性能结果与传统的协同能量检测器方法进行了比较,以突出所提方案的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信