{"title":"A Study of Mechanosensing of an Osteoblast at Focal Adhesions Under Cyclic Strain Using Magnetic Micropillars","authors":"T. Shiraishi, Kota Nagai","doi":"10.1115/imece2019-11132","DOIUrl":null,"url":null,"abstract":"\n It has been reported that cells sense and respond to mechanical stimuli. Mechanical vibration promotes the cell proliferation and the cell differentiation of osteoblast cells at 12.5 Hz and 50 Hz, respectively. It indicates that osteoblast cells have a mechansensing system for mechanical vibration. There may be some mechanosensors and we focus on cellular focal adhesions through which mechanical and biochemical signals may be transmitted from extracellular matrices into a cell. However, it is very difficult to directly apply mechanical stimuli to focal adhesions. We developed a magnetic micropillar substrate on which micron-sized pillars are deflected according to applied magnetic field strength and focal adhesions adhering to the top surface of the pillars are given mechanical stimuli. In this paper, we focus on intracellular calcium ion as a second messenger of cellular mechanosensing and investigate the mechanosensing mechanism of an osteoblast cell at focal adhesions under cyclic strain using a magnetic micropillar substrate. The experimental results indicate that the magnetic micropillars have enough performance to response to an electric current applied to a coil in an electromagnet and to apply the cyclic strain of less than 3% to a cell. In the cyclic strain of less than 3%, the calcium response of a cell was not observed.","PeriodicalId":332737,"journal":{"name":"Volume 3: Biomedical and Biotechnology Engineering","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Biomedical and Biotechnology Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2019-11132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
It has been reported that cells sense and respond to mechanical stimuli. Mechanical vibration promotes the cell proliferation and the cell differentiation of osteoblast cells at 12.5 Hz and 50 Hz, respectively. It indicates that osteoblast cells have a mechansensing system for mechanical vibration. There may be some mechanosensors and we focus on cellular focal adhesions through which mechanical and biochemical signals may be transmitted from extracellular matrices into a cell. However, it is very difficult to directly apply mechanical stimuli to focal adhesions. We developed a magnetic micropillar substrate on which micron-sized pillars are deflected according to applied magnetic field strength and focal adhesions adhering to the top surface of the pillars are given mechanical stimuli. In this paper, we focus on intracellular calcium ion as a second messenger of cellular mechanosensing and investigate the mechanosensing mechanism of an osteoblast cell at focal adhesions under cyclic strain using a magnetic micropillar substrate. The experimental results indicate that the magnetic micropillars have enough performance to response to an electric current applied to a coil in an electromagnet and to apply the cyclic strain of less than 3% to a cell. In the cyclic strain of less than 3%, the calcium response of a cell was not observed.