Resynchronization for multiprocessor DSP systems

S. Bhattacharyya, S. Sriram, Edward A. Lee
{"title":"Resynchronization for multiprocessor DSP systems","authors":"S. Bhattacharyya, S. Sriram, Edward A. Lee","doi":"10.1109/81.895327","DOIUrl":null,"url":null,"abstract":"This paper introduces a technique, called resynchronization, for reducing synchronization overhead in multiprocessor implementations of digital signal processing (DSP) systems. The technique applies to arbitrary collections of dedicated, programmable or configurable processors, such as combinations of programmable DSP's, ASICs, and FPGA subsystems. Thus, it is particularly well-suited to the evolving trend toward heterogeneous single-chip multiprocessors in DSP systems. Resynchronization exploits the well-known observation that in a given multiprocessor implementation, certain synchronization operations may be redundant in the sense that their associated sequencing requirements are ensured by other synchronizations in the system. The goal of resynchronization is to introduce new synchronizations in such a way that the number of original synchronizations that become redundant exceeds the number of new synchronizations that are added, and thus, the net synchronization cost is reduced. Our study is based on the context of self-timed execution for iterative dataflow specifications of DSP applications. An iterative dataflow specification consists of a dataflow representation of the body of a loop that is to be iterated indefinitely; dataflow programming in this form has been employed extensively in the DSP domain.","PeriodicalId":104733,"journal":{"name":"IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/81.895327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

This paper introduces a technique, called resynchronization, for reducing synchronization overhead in multiprocessor implementations of digital signal processing (DSP) systems. The technique applies to arbitrary collections of dedicated, programmable or configurable processors, such as combinations of programmable DSP's, ASICs, and FPGA subsystems. Thus, it is particularly well-suited to the evolving trend toward heterogeneous single-chip multiprocessors in DSP systems. Resynchronization exploits the well-known observation that in a given multiprocessor implementation, certain synchronization operations may be redundant in the sense that their associated sequencing requirements are ensured by other synchronizations in the system. The goal of resynchronization is to introduce new synchronizations in such a way that the number of original synchronizations that become redundant exceeds the number of new synchronizations that are added, and thus, the net synchronization cost is reduced. Our study is based on the context of self-timed execution for iterative dataflow specifications of DSP applications. An iterative dataflow specification consists of a dataflow representation of the body of a loop that is to be iterated indefinitely; dataflow programming in this form has been employed extensively in the DSP domain.
多处理器DSP系统的再同步
本文介绍了一种称为重同步的技术,用于减少数字信号处理(DSP)系统的多处理器实现中的同步开销。该技术适用于专用、可编程或可配置处理器的任意集合,例如可编程DSP、asic和FPGA子系统的组合。因此,它特别适合于DSP系统中异构单芯片多处理器的发展趋势。重新同步利用了一个众所周知的观察结果,即在给定的多处理器实现中,某些同步操作可能是冗余的,因为它们相关的排序需求是由系统中的其他同步保证的。重新同步的目标是以这样一种方式引入新的同步:冗余的原始同步的数量超过添加的新同步的数量,从而降低净同步成本。我们的研究是基于DSP应用的迭代数据流规范的自定时执行上下文。迭代数据流规范由循环体的数据流表示形式组成,该循环体将被无限迭代;这种形式的数据流编程在DSP领域得到了广泛的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信