Black Scholes Pricing Concept

I. Gikhman
{"title":"Black Scholes Pricing Concept","authors":"I. Gikhman","doi":"10.2139/ssrn.2623191","DOIUrl":null,"url":null,"abstract":"In some papers it have been remarked that derivation of the Black Scholes Equation (BSE) contains mathematical ambiguities. In particular there are two problems which can be raise by accepting Black Scholes (BS) pricing concept. One is technical derivation of the BSE and other the pricing definition of the option.In this paper, we show how the ambiguities in derivation of the BSE can be eliminated. We pay attention to option as a hedging instrument and present definition of the option price based on market risk weighting. In such approach, we define random market price for each market scenario. The spot price then is interpreted as a one that reflects balance between profit-loss expectations of the market participants.","PeriodicalId":177064,"journal":{"name":"ERN: Other Econometric Modeling: Derivatives (Topic)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometric Modeling: Derivatives (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2623191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In some papers it have been remarked that derivation of the Black Scholes Equation (BSE) contains mathematical ambiguities. In particular there are two problems which can be raise by accepting Black Scholes (BS) pricing concept. One is technical derivation of the BSE and other the pricing definition of the option.In this paper, we show how the ambiguities in derivation of the BSE can be eliminated. We pay attention to option as a hedging instrument and present definition of the option price based on market risk weighting. In such approach, we define random market price for each market scenario. The spot price then is interpreted as a one that reflects balance between profit-loss expectations of the market participants.
布莱克·斯科尔斯定价概念
在一些论文中,已经注意到布莱克斯科尔斯方程(BSE)的推导包含数学上的歧义。特别是有两个问题,可以提出接受布莱克斯科尔斯(BS)定价概念。一个是BSE的技术推导,另一个是期权的定价定义。在本文中,我们展示了如何消除BSE推导中的歧义。我们关注期权作为一种对冲工具,并提出了基于市场风险加权的期权价格定义。在这种方法中,我们为每个市场情景定义随机市场价格。因此,现货价格被解释为反映市场参与者盈亏预期之间平衡的价格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信