Sign language recognition using PCA, wavelet and neural network

Khadidja Sadeddine, F. Chelali, R. Djeradi
{"title":"Sign language recognition using PCA, wavelet and neural network","authors":"Khadidja Sadeddine, F. Chelali, R. Djeradi","doi":"10.1109/CEIT.2015.7233117","DOIUrl":null,"url":null,"abstract":"Deaf people all around the world use sign language to communicate and like oral languages vary from country to another so it is for the sign languages. In this paper, we propose a probabilistic neural network (PNN) for two Sign languages: American Sign Language (ASL) recognition for static signs and Arabic sign Language. The signs in both of them are realized with one naked hand and simple background. DCT, DWT and PCA for spatial reduction method. Although PCA has been used before in sign language as a dimensionality reduction technique, it is used here as a descriptor that represents a global image feature. Finally we combine the features to improve the recognition rate (RR) and an error rate(ER) where DWT combined with the PCA using PNN classifier achieves RR 80.2% and ER 3.90% for Arabic database. The RR is improved to be 94% for American database with an ER 1.2%.","PeriodicalId":281793,"journal":{"name":"2015 3rd International Conference on Control, Engineering & Information Technology (CEIT)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 3rd International Conference on Control, Engineering & Information Technology (CEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEIT.2015.7233117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Deaf people all around the world use sign language to communicate and like oral languages vary from country to another so it is for the sign languages. In this paper, we propose a probabilistic neural network (PNN) for two Sign languages: American Sign Language (ASL) recognition for static signs and Arabic sign Language. The signs in both of them are realized with one naked hand and simple background. DCT, DWT and PCA for spatial reduction method. Although PCA has been used before in sign language as a dimensionality reduction technique, it is used here as a descriptor that represents a global image feature. Finally we combine the features to improve the recognition rate (RR) and an error rate(ER) where DWT combined with the PCA using PNN classifier achieves RR 80.2% and ER 3.90% for Arabic database. The RR is improved to be 94% for American database with an ER 1.2%.
基于PCA、小波和神经网络的手语识别
世界各地的聋人都使用手语进行交流,就像口语一样,每个国家都有不同的语言,所以这是手语。在本文中,我们提出了一种概率神经网络(PNN)来识别两种手语:美国手语(ASL)的静态符号和阿拉伯手语。这两幅画中的标志都是用一只手和简单的背景来实现的。DCT、DWT和PCA进行空间约简。虽然PCA以前在手语中被用作降维技术,但它在这里被用作表示全局图像特征的描述符。最后,我们结合特征来提高识别率(RR)和错误率(ER),其中DWT与PCA结合使用PNN分类器对阿拉伯语数据库的识别率为80.2%,错误率为3.90%。对于美国数据库,RR提高到94%,ER为1.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信