A Clustering-Based QoS Prediction Approach for Web Service Recommendation

Jieming Zhu, Yu Kang, Zibin Zheng, Michael R. Lyu
{"title":"A Clustering-Based QoS Prediction Approach for Web Service Recommendation","authors":"Jieming Zhu, Yu Kang, Zibin Zheng, Michael R. Lyu","doi":"10.1109/ISORCW.2012.27","DOIUrl":null,"url":null,"abstract":"The rising popularity of service-oriented architecture to construct versatile distributed systems makes Web service recommendation and composition a hot research topic. It's a challenge to design accurate personalized QoS prediction approaches for Web service recommendation due to the unpredictable Internet environment and the sparsity of available historical QoS information. In this paper, we propose a novel landmark-based QoS prediction framework and then present two clustering-based prediction algorithms for Web services, named UBC and WSBC, aiming at enhancing the QoS prediction accuracy via clustering techniques. Hierarchical clustering is adopted based on the real-word Web service QoS dataset collected with PlanetLab1, which contains response-time values of 200 distributed service users and 1,597 Web services. The comprehensive experimental comparison and analysis show that our clustering-based approaches outperform other existing methods.","PeriodicalId":408357,"journal":{"name":"2012 IEEE 15th International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing Workshops","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 15th International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISORCW.2012.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

Abstract

The rising popularity of service-oriented architecture to construct versatile distributed systems makes Web service recommendation and composition a hot research topic. It's a challenge to design accurate personalized QoS prediction approaches for Web service recommendation due to the unpredictable Internet environment and the sparsity of available historical QoS information. In this paper, we propose a novel landmark-based QoS prediction framework and then present two clustering-based prediction algorithms for Web services, named UBC and WSBC, aiming at enhancing the QoS prediction accuracy via clustering techniques. Hierarchical clustering is adopted based on the real-word Web service QoS dataset collected with PlanetLab1, which contains response-time values of 200 distributed service users and 1,597 Web services. The comprehensive experimental comparison and analysis show that our clustering-based approaches outperform other existing methods.
基于聚类的Web服务推荐QoS预测方法
面向服务的体系结构在构建多用途分布式系统中的日益流行,使得Web服务的推荐和组合成为研究的热点。由于Internet环境的不可预测性和历史可用QoS信息的稀疏性,设计准确的个性化QoS预测方法是Web服务推荐的一个挑战。本文提出了一种新的基于地标的QoS预测框架,并在此基础上提出了两种基于聚类的Web服务预测算法UBC和WSBC,旨在通过聚类技术提高QoS预测的精度。基于PlanetLab1采集的包含200个分布式服务用户和1597个Web服务响应时间值的实时Web服务QoS数据集,采用分层聚类方法。综合实验对比和分析表明,基于聚类的方法优于其他现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信