A Robust Segmentation Free License Plate Recognition Method

Arsalan Khan, Sheryar Mehmood Awan, Muhammad Arif, Z. Mahmood, Gul Zameen Khan
{"title":"A Robust Segmentation Free License Plate Recognition Method","authors":"Arsalan Khan, Sheryar Mehmood Awan, Muhammad Arif, Z. Mahmood, Gul Zameen Khan","doi":"10.1109/icecce47252.2019.8940769","DOIUrl":null,"url":null,"abstract":"Automatic License Plate Recognition (ALPR) aims to extract vehicle license plate information from an image/video. Different factors associated with license plates, such as low-resolution, non-uniform illuminations, and view angle add a level of difficulty for any ALPR algorithm to perform accurately under aforementioned situations. To address these issues, this paper presents a robust and efficient segmentation free ALPR algorithm. The proposed algorithm uses adaptive boosting integrated with the Linear Discriminant Analysis (LDA) for features extraction and Classic Nearest Neighbor Classifier (CNNC) for classification. Detailed simulations on the Caltech database reveal that the proposed method outperforms recent state-of-the-methods in terms recognition accuracy, precison, and recall ratios at different day times on different angular views license plates.","PeriodicalId":111615,"journal":{"name":"2019 International Conference on Electrical, Communication, and Computer Engineering (ICECCE)","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Electrical, Communication, and Computer Engineering (ICECCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icecce47252.2019.8940769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Automatic License Plate Recognition (ALPR) aims to extract vehicle license plate information from an image/video. Different factors associated with license plates, such as low-resolution, non-uniform illuminations, and view angle add a level of difficulty for any ALPR algorithm to perform accurately under aforementioned situations. To address these issues, this paper presents a robust and efficient segmentation free ALPR algorithm. The proposed algorithm uses adaptive boosting integrated with the Linear Discriminant Analysis (LDA) for features extraction and Classic Nearest Neighbor Classifier (CNNC) for classification. Detailed simulations on the Caltech database reveal that the proposed method outperforms recent state-of-the-methods in terms recognition accuracy, precison, and recall ratios at different day times on different angular views license plates.
一种鲁棒无分割车牌识别方法
车牌自动识别(ALPR)旨在从图像/视频中提取车辆车牌信息。与车牌相关的不同因素,如低分辨率、不均匀照明和视角,增加了任何ALPR算法在上述情况下准确执行的难度。为了解决这些问题,本文提出了一种鲁棒且高效的无分割ALPR算法。该算法采用自适应增强与线性判别分析(LDA)相结合的特征提取和经典最近邻分类器(CNNC)相结合的分类方法。在加州理工学院数据库上的详细模拟表明,该方法在不同白天时间、不同角度的车牌识别精度、精确度和召回率方面都优于当前的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信