Analysis of Cost Minimization Methods in Geo-distributed Data Centers

Ayesheh Ahrari Khalaf, A. Abdalla
{"title":"Analysis of Cost Minimization Methods in Geo-distributed Data Centers","authors":"Ayesheh Ahrari Khalaf, A. Abdalla","doi":"10.1109/ICCCE.2016.60","DOIUrl":null,"url":null,"abstract":"Significant growth of Big Data leads to a great opportunity for data analysis. Data centers are continuously becoming more popular. At the same time data centers' cost are increasing as the amount of data is growing. Simply as Big Data is significantly increasing, data centers are facing new challenges. Hence the idea of geo-distributed data center is introduced. This paper investigates on the main challenges that data centers face and presents analyses for cost minimization methods. Parameters involved are analyzed. Simulation results show that joint parameters techniques outperformed separate parameter techniques.","PeriodicalId":360454,"journal":{"name":"2016 International Conference on Computer and Communication Engineering (ICCCE)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Computer and Communication Engineering (ICCCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCE.2016.60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Significant growth of Big Data leads to a great opportunity for data analysis. Data centers are continuously becoming more popular. At the same time data centers' cost are increasing as the amount of data is growing. Simply as Big Data is significantly increasing, data centers are facing new challenges. Hence the idea of geo-distributed data center is introduced. This paper investigates on the main challenges that data centers face and presents analyses for cost minimization methods. Parameters involved are analyzed. Simulation results show that joint parameters techniques outperformed separate parameter techniques.
地理分布式数据中心成本最小化方法分析
大数据的显著增长为数据分析带来了巨大的机遇。数据中心正变得越来越流行。同时,随着数据量的增长,数据中心的成本也在增加。随着大数据的显著增长,数据中心正面临着新的挑战。因此,提出了地理分布式数据中心的概念。本文研究了数据中心面临的主要挑战,并对成本最小化方法进行了分析。对涉及的参数进行了分析。仿真结果表明,联合参数技术优于分离参数技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信