Alexandros Papakonstantinou, Deming Chen, Wen-mei W. Hwu, J. Cong, Yun Liang
{"title":"Throughput-oriented kernel porting onto FPGAs","authors":"Alexandros Papakonstantinou, Deming Chen, Wen-mei W. Hwu, J. Cong, Yun Liang","doi":"10.1145/2463209.2488747","DOIUrl":null,"url":null,"abstract":"Reconfigurable devices are often employed in heterogeneous systems due to their low power and parallel processing advantages. An important usability requirement is the support of a homogeneous programming interface. Nevertheless, homogeneous programming interfaces do not eliminate the need for code tweaking to enable efficient mapping of the computation across heterogeneous architectures. In this work we propose a code optimization framework which analyzes and restructures CUDA kernels that are optimized for GPU devices in order to facilitate synthesis of high-throughput custom accelerators on FPGAs. The proposed framework enables efficient performance porting without manual code tweaking or annotation by the user. A hierarchical region graph in tandem with code motions and graph coloring of array variables is employed to restructure the kernel for high throughput execution on FPGAs.","PeriodicalId":320207,"journal":{"name":"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2463209.2488747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Reconfigurable devices are often employed in heterogeneous systems due to their low power and parallel processing advantages. An important usability requirement is the support of a homogeneous programming interface. Nevertheless, homogeneous programming interfaces do not eliminate the need for code tweaking to enable efficient mapping of the computation across heterogeneous architectures. In this work we propose a code optimization framework which analyzes and restructures CUDA kernels that are optimized for GPU devices in order to facilitate synthesis of high-throughput custom accelerators on FPGAs. The proposed framework enables efficient performance porting without manual code tweaking or annotation by the user. A hierarchical region graph in tandem with code motions and graph coloring of array variables is employed to restructure the kernel for high throughput execution on FPGAs.