Deep Learning for Prediction of Print Parameters and Realized Electrical Performance and Geometry on Inkjet Platform

P. Lall, Shriram K. Kulkarni, Ved Soni, Kartik Goyal, Scott Miller
{"title":"Deep Learning for Prediction of Print Parameters and Realized Electrical Performance and Geometry on Inkjet Platform","authors":"P. Lall, Shriram K. Kulkarni, Ved Soni, Kartik Goyal, Scott Miller","doi":"10.1115/ipack2022-97437","DOIUrl":null,"url":null,"abstract":"\n A closed-loop deep learning approach for correlating the print parameters with realized electrical performance and geometry estimations on an inkjet platform has been presented in this paper. An estimate of the changes in the print parameters and the recognized print dimension is necessary to print reliable and fine conductive traces. The inks used for this analysis are both particle and particle-free silver inks, and the comparison of the same is also studied. A closed-loop control algorithm is used to attain the desired electrical and geometrical values by changing the print parameters without any user intervention. Sensing is achieved by an automatic print parameter sensing system using a camera that captures the print to identify the geometry and dimension of the same. Once the realized print parameters are determined, a deep learning neural network regression model based on these parameters is used to predict the desired input print parameters, which are used to achieve the desired geometry and dimension of the print. These new parameter values are passed on to the printing software to optimize the print and attain the desired geometry and characteristics.","PeriodicalId":117260,"journal":{"name":"ASME 2022 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2022 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ipack2022-97437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A closed-loop deep learning approach for correlating the print parameters with realized electrical performance and geometry estimations on an inkjet platform has been presented in this paper. An estimate of the changes in the print parameters and the recognized print dimension is necessary to print reliable and fine conductive traces. The inks used for this analysis are both particle and particle-free silver inks, and the comparison of the same is also studied. A closed-loop control algorithm is used to attain the desired electrical and geometrical values by changing the print parameters without any user intervention. Sensing is achieved by an automatic print parameter sensing system using a camera that captures the print to identify the geometry and dimension of the same. Once the realized print parameters are determined, a deep learning neural network regression model based on these parameters is used to predict the desired input print parameters, which are used to achieve the desired geometry and dimension of the print. These new parameter values are passed on to the printing software to optimize the print and attain the desired geometry and characteristics.
基于深度学习的喷墨打印参数预测及在喷墨平台上实现的电性能和几何特性
本文提出了一种在喷墨平台上将打印参数与已实现的电性能和几何估计相关联的闭环深度学习方法。估计打印参数的变化和识别的打印尺寸对于打印可靠和精细的导电痕迹是必要的。分析中使用的油墨有颗粒银油墨和无颗粒银油墨,并对两者进行了比较。闭环控制算法通过改变打印参数来达到所需的电气和几何值,而无需任何用户干预。传感是通过自动打印参数传感系统实现的,该系统使用相机捕获打印以识别相同的几何形状和尺寸。一旦实现的打印参数确定,基于这些参数的深度学习神经网络回归模型预测所需的输入打印参数,并使用这些参数来实现所需的打印几何形状和尺寸。这些新的参数值传递给打印软件,以优化打印并获得所需的几何形状和特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信