An Adaptive Neuro-Fuzzy Inference System (ANFIS) Model for Prediction of Optimal Dose In Methadone Maintenance Therapy

Nur Raidah Rahim, Sharifalillah Nordin, Rosma Mohd. Dom
{"title":"An Adaptive Neuro-Fuzzy Inference System (ANFIS) Model for Prediction of Optimal Dose In Methadone Maintenance Therapy","authors":"Nur Raidah Rahim, Sharifalillah Nordin, Rosma Mohd. Dom","doi":"10.1109/ICSGRC.2019.8837074","DOIUrl":null,"url":null,"abstract":"Methadone Maintenance Therapy is a therapy of methadone drug substitution to manage the opioid dependence in drug addictions. Prescribing the optimal dose of methadone is crucial and complex. It involves avoiding the opioid withdrawal consequences, suppressing cravings, and preventing relapse to illicit opioids use. Hence, this study provides prediction for methadone optimal dose by applying the adaptive neuro-fuzzy inference system (ANFIS) technique. ANFIS has the advantage of knowledge learning capabilities from both clinical data and the expert knowledge (i.e. fuzzy rules), and it is well suited for managing complex problems. The ANFIS model was developed by using MATLAB (i.e. Fuzzy Logic Toolbox). The results obtained show close agreement between the predicted and actual optimal doses as the obtained coefficient value are close to unity in both in both training and testing datasets. This indicates the ANFIS model is able to deal with real clinical data and it is viable to be used for predicting the optimal methadone doses in MMT patients.","PeriodicalId":331521,"journal":{"name":"2019 IEEE 10th Control and System Graduate Research Colloquium (ICSGRC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 10th Control and System Graduate Research Colloquium (ICSGRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSGRC.2019.8837074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Methadone Maintenance Therapy is a therapy of methadone drug substitution to manage the opioid dependence in drug addictions. Prescribing the optimal dose of methadone is crucial and complex. It involves avoiding the opioid withdrawal consequences, suppressing cravings, and preventing relapse to illicit opioids use. Hence, this study provides prediction for methadone optimal dose by applying the adaptive neuro-fuzzy inference system (ANFIS) technique. ANFIS has the advantage of knowledge learning capabilities from both clinical data and the expert knowledge (i.e. fuzzy rules), and it is well suited for managing complex problems. The ANFIS model was developed by using MATLAB (i.e. Fuzzy Logic Toolbox). The results obtained show close agreement between the predicted and actual optimal doses as the obtained coefficient value are close to unity in both in both training and testing datasets. This indicates the ANFIS model is able to deal with real clinical data and it is viable to be used for predicting the optimal methadone doses in MMT patients.
自适应神经模糊推理系统(ANFIS)模型预测美沙酮维持治疗最佳剂量
美沙酮维持治疗是一种美沙酮药物替代治疗阿片类药物依赖的药物成瘾。处方最佳剂量的美沙酮是至关重要和复杂的。它包括避免阿片类药物戒断后果,抑制渴望,防止再次非法使用阿片类药物。因此,本研究采用自适应神经模糊推理系统(ANFIS)技术对美沙酮最佳剂量进行预测。ANFIS具有从临床数据和专家知识(即模糊规则)中学习知识的优势,非常适合于复杂问题的管理。利用MATLAB(即模糊逻辑工具箱)开发了ANFIS模型。所得的系数值在训练集和测试集上都接近一致,结果表明预测最佳剂量与实际最佳剂量非常吻合。这表明ANFIS模型能够处理真实的临床数据,并且可以用于预测MMT患者的最佳美沙酮剂量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信