Choquistic Regression: Generalizing Logistic Regression using the Choquet Integral

A. Tehrani, Weiwei Cheng, E. Hüllermeier
{"title":"Choquistic Regression: Generalizing Logistic Regression using the Choquet Integral","authors":"A. Tehrani, Weiwei Cheng, E. Hüllermeier","doi":"10.2991/eusflat.2011.86","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a generalization of logistic regression based on the Choquet integral. The basic idea of our approach, referred to as choquistic regression, is to replace the linear function of predictor variables, which is commonly used in logistic regression to model the log odds of the positive class, by the Choquet integral. Thus, it becomes possible to capture non-linear dependencies and interactions among predictor variables while preserving two important properties of logistic regression, namely the comprehensibility of the model and the possibility to ensure its monotonicity in individual predictors. In experimental studies with real and benchmark data, choquistic regression consistently improves upon standard logistic regression in terms of predictive accuracy.","PeriodicalId":403191,"journal":{"name":"EUSFLAT Conf.","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EUSFLAT Conf.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/eusflat.2011.86","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

In this paper, we propose a generalization of logistic regression based on the Choquet integral. The basic idea of our approach, referred to as choquistic regression, is to replace the linear function of predictor variables, which is commonly used in logistic regression to model the log odds of the positive class, by the Choquet integral. Thus, it becomes possible to capture non-linear dependencies and interactions among predictor variables while preserving two important properties of logistic regression, namely the comprehensibility of the model and the possibility to ensure its monotonicity in individual predictors. In experimental studies with real and benchmark data, choquistic regression consistently improves upon standard logistic regression in terms of predictive accuracy.
Choquet回归:使用Choquet积分推广逻辑回归
本文提出了一种基于Choquet积分的逻辑回归推广方法。我们的方法的基本思想,被称为Choquet回归,是用Choquet积分代替预测变量的线性函数,这在逻辑回归中常用来模拟正类的对数赔率。因此,可以捕捉预测变量之间的非线性依赖关系和相互作用,同时保留逻辑回归的两个重要属性,即模型的可理解性和在单个预测变量中确保其单调性的可能性。在真实数据和基准数据的实验研究中,随机回归在预测精度方面始终优于标准逻辑回归。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信